

Accuracy of Simulated Data for Bifacial Systems with Varying Tilt Angles and Share of Diffuse Radiation

International Solar Energy Research Center Konstanz

Measured data compared to simulations

- ECN.TNO Gaby Janssen, Teun Burgers
- ISC Konstanz Djaber Berrian, Joris Libal
- PVsyst Bruno Wittmer, André Mermoud
- ZHAW Markus Klenk, Hartmut Nussbaumer, Marco Morf, Franz Baumgartner

Amsterdam, bifi PV 2019

Retrospection and motivation

Engineering IEFE Institute of Energy Systems and Fluid Engineering

Measurement results obtained with the BIFOROT

- BIFOROT Bifacial Outdoor Rotor Tester
- Focus on central module(s)

Continuously varying tilt angle (automated, 1-minute cycle 0°-90°, 12 steps)

No tracker \Rightarrow South-oriented, variable mounting parameters

Retrospection and motivation

Simulation tools from PVsyst, ISC Constance and ECN.TNO (2 models)

Three characteristic irradiation conditions and tilt angle variation

Results (deviation of daily yield vs. tilt angle)

Deviations dependent on irradiation conditions and tilt angle

Results sparked the interest in a closer analysis

of Applied Science

Engineering IEFE Institute of Energy Systems and Fluid Engineering

School of

School of Engineering IEFE Institute of Energy Systems

- Retrospection and motivation
- Setup and general aspects
- Measured data compared to simulations
 - Front side irradiation G
 - Rear side irradiation G_{rear}
 - "Effective" I_{SC,rear}
 - Bifacial gain (current)
 - Power
- Summary

More detailed information \rightarrow Paper submitted to «Solar Energy»

Setup and general aspects

Power measurement of central bifacial module M2 ; 12 tilt angles per minute I_{SC} measurement of M1 and M3 reveal contribution of front and rear side

M3 bifacial Rear side blocked I_{SC} frontside M2 bifacial P_{MPP} bifacial M1 bifacial

Front side blocked I_{SC} rearside

Albedo: 0.5

Setup and general aspects

Irradiation data from various sensors

Rooftop: GHI and DHI by pyranometer + pyrheliometer + horizontal reference cell

Rotating with module M2: Pyranometer + reference cell

School of Engineering IEFE Institute of Energy Systems and Fluid Engineering

of Applied Science

Setup and general aspects

School of Engineering IEFE Institute of Energy Systems and Fluid Engineering

Three days with characteristic irradiation conditions

of Applied Science

Mid-October to early November

10/15 Irradiation \uparrow diffuse fraction: 18% 11/02 Mixed conditions; diff. fraction: 72% 11/08 Irradiation \downarrow diffuse fraction: 99%

Three simulation tools for monofacial and bifacial applications (also tracking)

- ECN.TNO: "BIGEYE" V3
- ISC Konstanz: "MoBiDiG" (Modelling of Bifacial Distributed Gain)
- PVsyst V6.81: Renown commercial simulation tool

Differences mainly in the irradiation model

Details \Rightarrow paper

Zurich University of Applied Sciences

Measured data compared to simulations

Simulation of the front side well established in the simulation of monofacial modules

Why should front side simulation be of interest for bifacial modules?

- In the course of the data analysis → the sensitivity of the output at specific conditions (low irradiation and steep tilt angle) to the irradiation measurement was highlighted
- Tilt angles that can be a reasonable choice for bifacial installations also include conditions that are rarely applied to monofacial systems (e.g. vertical installation)

Analysis of G: Irradiation on front side module plane

Other approach for front side analysis: "Effective Isc" \rightarrow Paper

Calculation with BIGEYE from ECN.TNO

Similar results for all three simulation tools

"G_{front} simulated" based on GHI data recorded with the pyranometer on the roof

Significant deviations only for low irradiance

School of Engineering IEFE Institute of Energy Systems and Fluid Engineering

GHI for simulation, pyranometer on roof

250 •0 y = 1.017x€10 200 • 15 11/08/2017 •18 150 •21 lit • 25

GHI for simulation, pyranometer on axis at 0° tilt

of Applied Science

G front simulated [W.m⁻²] 100 • 30 Diffuse • 35 50 Fraction •40 = 99 % • 45 0 • 60 100 0 200 300 90 G pyranometer on axis [W.m⁻²]

Measurement

2017/11/08

12:00

Diffuse Fraction

= 99 %

15:00

- Horiz. Pyranometer roof
- Horiz. ISE cell roof
- Horiz. diffuse Pyr. roof
- Rotating Pyranometer Tilt=0°
- Rotating ISE cell Tilt=0°

Zurich University of Applied Sciences

Engineering IEFE Institute of Energy Systems and Fluid Engineering

Analysis of observed behaviour

'rotating pyranometer' gives lower GHI,

 \Rightarrow lower beam component (GHI-DHI) and clearness parameter ϵ for Perez model

Detailed description and analysis \Rightarrow **Paper**

Any uncertainty in horizontal beam component (GHI-DHI) or the circumsolar fraction, will be magnified at larger tilt angles

If horizontal beam component is overestimated, the overestimation blows up at high tilt angles

Zurich University of Applied Sciences

Rear side irradiation G_{rear}

Rear side irradiance

- Obvious: Relate to measurement data of M1 (I_{SC})
- However shading of front row @ direct Irr. during relevant period (construction crane)

meteostation L cloud camera BIFOROT surveillance camera for remote control

Other option $I_{SC,rear} = I_{sc} (M2) - I_{sc} (M3)$

of Applied Scien

School of

Engineering

and Fluid Engineering

IEFE Institute of Energy Systems

Rear side irradiation G_{rear}

I_{SC,rear} vs. G_{rear} (simulated)

 G_{rear} : averaged over module plane

- Compared to front side: Less linear relationship
- Increased differences between the three tools reflect the complexity of the calculation of the rear side irradiance, and the different choices made in the simulation codes
- Deviations and nonlinearities smaller for low irradiation, high diffuse fraction

School of

Engineering

and Fluid Engineering

IEFE Institute of Energy Systems

of Applied Science

School of

Engineering

Effective $I_{SC, rear} > I_{SC, rear}$ (STC) values indicate (< and > $I_{SC, rear}$ (STC) observed):

- The simulation underestimates the irradiance on the rear
- $I_{SC}(M2)$ $I_{SC}(M3)$ is overestimating the contribution of the rear side to total I_{SC}

Bifacial gain (current)

Power

Deviations ΔP in integrated power output, (simulated-measured) to measured

Deviations at overcast conditions for the annual yield: only small total contribution

Front side

Significant deviations (measured to simulated) only for overcast conditions

- Results very sensitive at conditions with small beam component (GHI-DHI)
- Small uncertainties in beam component enhanced for steeper tilt angles
- Mono- and bifacial affected.
 - Bifi installations: wider range of applied tilt angles
 - Very low error for tilt angles that are typical for monofacial modules
- Typical south-oriented bifi installations \rightarrow front side related effects dominate

"Simulated front side irradiance is as good as the irradiance data enables"

Rear side

Deviations particularly at conditions with high direct irradiation share

- Measurements more affected by inhomogeneities and shading by the mounting
- Causes for deviations still not fully understood

More distinct differences between the three simulation tools

Summary

Bifacial gain and total electrical output \rightarrow Well predicted by all three models

Power: Particularly for high irradiation, low diffuse share remarkably small deviations

Overcast conditions \rightarrow comparatively small contribution to the annual yield

Irr.: \uparrow ; diffuse fraction: 18%	Irr.: \leftrightarrow ; diff. fraction: 72%	Irr.: \downarrow ; diff. fraction: 99%
ΔP low for moderate tilt	"Slope" and "offset"	"Slope" and "offset" \uparrow
30° to 45° $\Delta P < \pm 2\%$	Δ P max for 0° or 90°	ΔP max for 0° or 90°
$\Delta P \uparrow$ towards 0° and 90° but within ± 3 %	Per tool: Δ P < 6 % All tools: Δ P ~ ± 5 %	Per tool: \triangle P < 10 % All tools: \triangle P ~ ± 10 %

Results shows that bifacial yield modeling is reaching a stage of maturity

Our aim is to present the analysis of long-term data in a future study

Zurich University of Applied Sciences

Additional slides

"Effective I_{sc}" front side

Other concept, the «effective I_{sc} » Good linear relation: I_{sc} (β) of M3 and G(β)

 $Isc(M3,\beta) = I_{sc,front}^{Eff} \frac{G(\beta)}{E^0}$

 $G(\beta)$ measured or simulated effective I_{sc} E_0 irradiation at STC

Diffuse fraction: 99%

Fair agreement with the STC I_{SC,front}. Deviations expected :

- Module: additional and tilt dependent reflection losses. Irradiance on module less as on pyranometers $\Rightarrow I_{SC,front}^{eff} < Isc (STC)$. According to results no major influence.
- Slight current increase with temperature (3-4 mA.K⁻¹). Should be similar for all tilt angles and lead to higher effective *I*^{eff}_{SC.front}. Averaging of temp. due to rotation. Measured values > STC values, but deviations > than temp. effect.
- Inaccuracies in the measured irradiance and current. Measured I^{eff}_{SC.front} always larger than the STC value indicates underestimation of G or an overestimation of the front side current.
- Non-uniform irradiance distribution on the module. The cell with smallest irradiance will limit the current leading to smaller measured currents.

Analysis of observed behaviour

'rotating pyranometer' gives lower GHI,

 \Rightarrow lower beam component (GHI-DHI) and clearness parameter ϵ for Perez model

 $G_{front} =$

$$(GHI - DHI + DHI \cdot F_1) \frac{\cos \theta}{\cos \theta_z} + DHI \cdot \left[(1 - F_1) \cdot VF_{sky} + F_2 \cdot \sin \beta \right] + \gamma \cdot GHI \cdot VF_{ground}$$

 θ : angle of beam incidence, θ z: sun zenith angle, γ : ground reflection coefficient F_1 and F_2 : Perez coefficients depending on ϵ and the sky brightness

 $\mathsf{VF}_{\mathsf{sky}}\downarrow$ with tilt angle \uparrow

Any uncertainty in horizontal beam component (GHI-DHI) or in F1, a parameter determining the circumsolar fraction, will be magnified at larger tilt angles