

European Commission

Bifacial silicon PV modules characterisation at the European Solar Test Installation

Juan Lopez-Garcia

European Commission, Joint Research Centre (JRC), Ispra, Italy

INTRODUCTION

The European Solar Test Installation (ESTI) is a European reference laboratory for calibration of photovoltaic (PV) devices. Since its launch in the late 1970's, it also has been the forefront of the development of international standards for the assessment of electrical performance of PV products and their reliability. ESTI is located at the JRC Ispra site in Italy. The market share of bifacial crystalline Si PV modules has grown significantly over the last years, because they can produce additional output energy in comparison to conventional (monofacial) PV modules. ESTI is involved in the measurements of bifacial PV devices and the testing of the different approaches proposed in the recently published technical specification IEC TS 60904-1-2 for the measurement of currentvoltage characteristics of bifacial photovoltaic devices.

SINGLE-SIDE ILLUMINATION: EQUIVALENT IRRADIANCE METHOD

 \Box Bifaciality coefficients, at STC: φ_{Pmax} (%) = $P_{max REAR}/P_{max FRONT}$; φ_{Isc} (%) = $I_{sc REAR}/I_{sc FRONT}$ \Box Rear irradiance G_R and Equivalent irradiance level G_{E_i} : $G_{E_i} = 1000 W/m^2 + \varphi \cdot G_{R_i}$

```
\Box \varphi = Min(\varphi_{Isc}, \varphi_{Pmax})
```

 \Box Rear irradiance driven power gain yield, *BiFi*: linear fit's slope of the P_{max} versus G_R data series. $P_{max BiFi100} = P_{maxSTC} + BiFi \times 100$ □Specific P_{max} for G_{R_1} =100W/m², G_{R_2} =200 W/m² \Rightarrow linear interpolation: $P_{max BiFi200} = P_{maxSTC} + BiFi \times 200$

 \Box Non-irradiated background $G_R < 3 \text{ W/m}^2$ at any point (black painted panel) **\Box**Recommendation: Limit test area size \Rightarrow Baffles \Box PASAN IIIB pulsed solar simulator with in-house multi-flash method (25.0±0.1 °C)

ESTI ISO/IEC 17025 accredited calibration laboratory: accredited for single-side illumination I-V measurements of bifacial PV devices with a pulsed solar simulator

NATURAL SUNLIGHT: individual modules

Natural sunlight rear irradiance driven power gain yield Bifacial Energy Yield and rating

Vertical E-W oriented

□ Rear irradiance measurements and modelling

Log-term and soiling degradation study

Modules

Calibration Centre Laboratorio Accreditato di Taratura

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC natory of EA, IAF and ILAC

Solar Energy Research Institute of Singapore

tual Recognition Agreements

Pagina 1 di 5

> Convenor TG82 WG 2 standards for modules, non-concentrating

> Participation as reference laboratory in the 1st International Round-Robin on Bifacial modules

DOUBLE-SIDE ILLUMINATION

 \times Non-uniformity <5% \Rightarrow Improvement reflector \checkmark Adjustable rear irradiance G_R (100-200 W/m²)

0 1000 251.7 251.7 +0 98 100 1098 273.4 271.9 +0.5 200 1196 295.8 292.1 +1.3	φ (%)	G _R (W/m ²)	G _E (W/m ²)	P _{max} G _E (W)	P _{max} BiFi _{GR} (W)	ΔP _{max} (%)
	98	0	1000	251.7	251.7	+0
200 1196 295.8 292.1 +1.3		100	1098	273.4	271.9	+0.5
		200	1196	295.8	292.1	+1.3

> Despite non-uniformity, P_{max} single-side \sim P_{max} double-sided

>Non–uniform G_{rear} affects I_{sc} and V up to V_{mpp} but to a much lesser extent the P_{max}

Suitable method for bifacial PV modules characterisation?

Simultaneous double source based on LED bias light (Prototype for minimodules 40x40cm²)

 $P_{max} = f(G_R)$

An array of low cost 30mm LEDs

OUTDOOR TEST FIELD: array test

□ Vertical E-W oriented and south oriented racks \Box p-PERC 60 cells frameless modules with φ =67% □ Preliminary data from inverters in summer: +28% tilted vs vertical □ Long-term degradation and energy yield

CONCLUSIONS

Temporal stability: Class "A" \checkmark Pulse to Pulse repeatability ~ 0.5% ✓ Irradiance non-uniformity: 4.45% Class "B" X Spectral match: worse than class "C"

 compensated by a mismatch correction, or using the effective irradiance method (IEC 60904-7)

Up-scaling for full size modules: ongoing

✓ Accredited calibration to IEC TS 60904-1-2 is now available

✓ Indoor and outdoor facilities for calibration using single-side and double-sided illumination

Small bifacial testing array for energy yield and long-term degradation

ACKNOWLEDGEMENTS

JRC-ESTI Colleagues Tony Sample, Diego Pavanello, Robert Kenny, David Shaw, Mike Field, Ewan Dunlop, Francesco Noseda, Roberto Galleano, Harald Mullejans, Elena Salis, Ana Gracia-Amillo, Win Zaaiman, Giorgio Bardizza, Laura Pinero, Ebrar Ozkalay, Enric Grau-Luque, Sundeep Gali, Luca Castelazzi and ChristianThiel.

Contact Juan Lopez-Garcia

European Commission – Joint Research Centre (JRC) European Solar Test Installation (ESTI) C.2 Energy Efficiency and Renewables unit Via E. Fermi 2749, TP-450, I-21027 Ispra (VA), Italy. Tel. +39 0332 783720 – Email: juan.lopez-garcia@ec.europa.eu

The European Commission's science and knowledge service Joint Research Centre

🛞 EU Science Hub: *ec.europa.eu/jrc* 📝 @EU_ScienceHub ท Ioint Research Centre

f EU Science Hub - Joint Research Centre 🛛 🛗 EU Science Hub

Joint Research Centre