

FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE

Measurement of Bifacial Solar Cells with Single- and Both-sided Illumination at CalLab PV Cells

Fan Guo, Michael Rauer, Jochen Hohl-Ebinger

Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg, Germany, Phone +49 761/4588-5564, E-Mail fan.guo@ise.fraunhofer.de

MOTIVATION

- Bifacial solar devices market share: expected to increase to over 50% by 2029^[1]
- Missing standardized characterization method for evaluating bifacial solar devices performance hinders the mass production^[2]

INTRODUCTION

Two different methods for indoor measurements proposed in the IEC technical specification 60904-1-2^[3]:

Double-sided illumination (Bifacial method)

Front: $E_{\rm front} = 1000 \,{\rm Wm^{-2}}$ Rear: $E_{rear} = 100 \text{ or } 200 \text{ Wm}^{-2}$

EXPERIMENTAL

(i) Advanced two-mirror setup at CalLab PV Cells

- Spectral distribution at front and rear: Class A
- Irradiance uniformity at front and rear: Class A
- Light transmission from one side to the other minimized
- Precise temperature control within 25.0 ± 0.3 °C

(ii) I-U (Current-Voltage) measurement of a nonlinear bifacial PERC cell

*G*_F method:

Bifacial method:

Literature: agreement between both methods within 0.4 – 2 $%_{rel}$ [4-6]

Main aim: Quantitative comparison of Single- and Double-sided illumination methods, focus on nonlinear bifacial cell

NONLINEAR BIFACIAL PERC SOLAR CELL

- Bifacial Passivated Emitter and Rear Cell (**PERC**): Emitter
 - Rear surface passivation with SiO_xN_y/SiN_z^[7]
 - High density of positive charges in

(iii) Quantitative comparison between Bifacial and G_F methods

- ΔI_{sc} between two methods: < 0.05% _{rel}
- $\blacksquare \Delta P_{mpp}$ between two methods: < 0.1%_{rel}

 \Rightarrow *Bifacial* and *G*_E methods are consistent for nonlinear bifacial PERC cell

SUMMARY

SiO_xN_y/SiN_z creates inversion layer that is shunted at the local aluminum-alloyed contacts ^[8-9]

Nonlinear J_{sc} (E) relation:

 Bifaciality strongly dependent on irradiance

Theory: Different photogeneration depth profiles between Bifacial and G_F methods^[10]

 \rightarrow Difference between two methods possible for nonlinear bifacial cells

- Difference in IU parameters between **Bifacial** and G_F methods for nonlinear bifacial PERC cell below 0.1%_{rel}
- \Rightarrow Bifacial and G_{F} methods proposed in IEC technical specification 60904-1-2 have shown good agreement, even for strong nonlinear bifacial cells
- CalLab PV Cells provides calibration services for bifacial solar cells using the advanced two-mirror setup

EMPIR

REFERENCES

[1] ITRPV, 9th edition, 2018 [2] R. Kopecek et al., Photovoltaics International, 2014 [3] IEC TS 60904-1-2: Technical Specification, 2019 [4] G. Arnoux et al., 13thSNEC conference, shanghai, 2018 [5] C. Deline et al., IEEE Journal of photovoltaics, 2017. Supported by: [6] L. Peyrot et al., 4th bifi-PV workshop, 2017 Federal Ministry for Economic Affairs and Energy [7] P. Palinginis et al., Photovoltaics International, 2019 [8] J. Seiffe et al., Journal of Applied Physics, 2011 [9] S. Dauwe et al., Progress in photovoltaics, 2002 [10] M. Rauer, 36th EU PVSEC, Marseille, 2019 on the basis of a decision by the German Bundestag

This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme within the project "PV-Enerate" (number 16ENG02).

This work has been partly supported by the German Federal Ministry for Economic Affairs and Energy within the project "BiZePS" (contract number 0325909).