# Temperature coefficients and LeTID of bifacial PV modules









BifiPV workshop Amsterdam – September 2019



#### Thank you for reading this whitepaper & we appreciate your feedback

Our whitepapers are about sharing our knowledge with you.

We would like to start a dialogue on continuous improvement on both sides.

We need your feedback, so we can make things better!



You can contact us at: contact@eternalsun.com or +31 (0)15-7440161



#### Two topics with Yield impact for Bifacial PV











#### Two topics with Yield impact for Bifacial PV











### Temperature coefficients are a big challenge for the PV industry



#### Round robin between 12 leading laboratories:

#### Typical tempco measurement uncertainties **OVER** 10%

[1] MIHAYLOV, B.V. ... et al, 2014. Results of the Sophia module intercomparison part-1: STC, low irradiance conditions and temperature coefficients - C-Si technologies



#### This uncertainty gets little attention, but impact can be significant



### In sunbelt area's with high operating temperatures, the impact is largests

![](_page_5_Picture_3.jpeg)

# A 10% difference in temperature coefficient equates to a >1% difference in energy yield

The following figure shows the relationship between temperature coefficient and relative energy yield for the specified location (Phoenix, USA) [2]:

![](_page_6_Figure_2.jpeg)

#### 10% difference in temperature coefficient = 1.2% difference in energy yield for this PV plant location

Image adjusted from : [2] Yang Yang, YingBin Zhang...Pierre J. Verlinden, 2014. Understanding the uncertainties in the measurement of temperature coefficients of Si PV modules – PVSyst modelling of energy yield with varying temperature coefficient in Phoenix, USA climatic conditions

![](_page_6_Picture_5.jpeg)

### Our Goal:

Reduce T.C. measurement uncertainty from >10% to <5%, for all PV technologies

![](_page_7_Picture_2.jpeg)

![](_page_7_Picture_3.jpeg)

![](_page_8_Figure_1.jpeg)

![](_page_8_Picture_2.jpeg)

![](_page_8_Figure_3.jpeg)

![](_page_8_Picture_4.jpeg)

![](_page_8_Picture_5.jpeg)

![](_page_9_Figure_1.jpeg)

![](_page_9_Picture_2.jpeg)

![](_page_9_Figure_3.jpeg)

![](_page_9_Picture_4.jpeg)

![](_page_9_Picture_5.jpeg)

## The single side and flip method is now regarded as most accurate

![](_page_10_Picture_1.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_10_Picture_3.jpeg)

![](_page_10_Picture_4.jpeg)

![](_page_10_Picture_5.jpeg)

# Bifacial measurements in the temperature controlled lab flasher: very low rear irradiance

![](_page_11_Figure_1.jpeg)

IEC 60904-1-2

![](_page_11_Picture_3.jpeg)

Illuminati

on

#### Result: on all 9 points rear side irradiance < 3W/m<sup>2</sup>

Voltage measured [mV]

| Position on |       |      |
|-------------|-------|------|
| module rear | 95.35 | 1000 |
| P1          | 0.215 | 2.25 |
| P2          | 0.192 | 2.01 |
| Р3          | 0.247 | 2.59 |
| P4          | 0.144 | 1.51 |
| Р5          | 0.108 | 1.13 |
| Р6          | 0.157 | 1.65 |
| P7          | 0.161 | 1.69 |
| Р8          | 0.169 | 1.77 |
| Р9          | 0.176 | 1.85 |

The temperature box is suitable for bifacial module testing according to IEC 60904-1-2 in combination with module mask

![](_page_12_Picture_3.jpeg)

Illuminati

on

Irradiance equivalent [W/m<sup>2</sup>]

#### Pulsewidth: HJT modules require a pulse up to 300 ms

#### HJT: 100-300 ms

#### Pmax deviation as a function of sweep lenght and sweep direction

![](_page_13_Figure_3.jpeg)

- Every cell V<sub>oc</sub> increase of 18mV roughly doubles the carrier concentration, which causes a doubled sweep time effect <sup>[2]</sup>
- More cells in series (e.g. 60 to 72 cells) reduces the string capacitance
- Multiflash can be applied in combination with Single Long pulse

[1] Source: Based on 5600 SLP sweep time sequence measurement of PERC module (2016)

[2] Source: Smets et al., Solar Energy: the physics and engineering of photovoltaic conversion technologies and systems (2016)

![](_page_13_Picture_9.jpeg)

Illuminati

on

### Pulsewidth: a stable single long pulse enables lowest uncertainty on high efficiency PV technologies

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

Illuminati

on

Spectrum: a wide, 300-1200 nm spectrum is critical for T.C. measurement on high efficiency cell technology

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

Image adjusted from: Zhang et al.: 335-W World-record p-type monocrystalline module IEEE journal of photovoltaics, VOL. 6, NO. 1 (2016)

![](_page_15_Picture_4.jpeg)

Spectrum: when temperature increases, QE changes in 1000-1200 nm

![](_page_16_Figure_1.jpeg)

Source: PTB Photoclass

![](_page_16_Picture_3.jpeg)

Illuminati

on

#### Spectral coverage of >99% in 300-1200 nm of Eternalsun Spires 5100 & 5600 SLP Flashers enable the lowest uncertainty

Illuminati on

|     |              |           |     | AM    | 1.5 <b>G</b> |     | Spire Flas | sher solar sin | nulator | <u>Results</u> |
|-----|--------------|-----------|-----|-------|--------------|-----|------------|----------------|---------|----------------|
|     | AM1 5        | \$86-0003 | 8   | nm    | Value        | nm  | Value      | Midpoint       | Value   | SPC            |
| 2,5 | - AWI1.5     | 380-0003  | 0   | 300.0 | 0.0010       | 300 | 0.005      | 300.5          | 0.0052  | 99.31%         |
|     |              |           |     | 300.5 | 0.0012       | 301 | 0.006      | 301.5          | 0.0059  |                |
| 2,0 | <b>^</b>     |           |     | 301.0 | 0.0019       | 302 | 0.006      | 302.5          | 0.0066  | SPD            |
|     |              | 0 M M     | ~   | 301.5 | 0.0027       | 303 | 0.007      | 303.5          | 0.0072  | 34.65%         |
| 1,5 |              | . K. have | ₩¥  | 302.0 | 0.0029       | 304 | 0.008      | 304.5          | 0.0079  |                |
| 1.0 | MAN          |           |     | 302.5 | 0.0043       | 305 | 0.008      | 305.5          | 0.0092  |                |
| 1,0 |              |           |     | 303.0 | 0.0071       | 306 | 0.010      | 306.5          | 0.0110  |                |
| 0,5 | <u>x</u> 117 |           |     | 303.5 | 0.0090       | 307 | 0.012      | 307.5          | 0.0128  | Edition 2      |
|     |              |           |     | 304.0 | 0.0095       | 308 | 0.014      | 308.5          | 0.0146  | Edition 3      |
| 0,0 |              |           |     | 304.5 | 0.0120       | 309 | 0.016      | 309.5          | 0.0164  |                |
| 300 | 400          | 500       | 600 | 305.0 | 0.0165       | 310 | 0.017      | 310.5          | 0.0190  |                |

Eternalsun Spire flashers have spectrum coverage starting at 300nm. This is critical for accurately measuring high efficiency technologies

![](_page_17_Picture_4.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_18_Picture_2.jpeg)

![](_page_18_Figure_3.jpeg)

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

#### Temperature control box added to flasher:

- Heating and cooling from 15 C to 85 C
- Temperature control chamber moves down to fully enclose PV module for accurate temperature control

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

Temperat

ure

## Temperature control: temperature uniformity directly affects uncertainty

Any temperature difference between individual cells in the module causes an error in the coefficient

![](_page_20_Figure_2.jpeg)

![](_page_20_Picture_3.jpeg)

Temperat ure

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_21_Picture_5.jpeg)

### The "stable temperatures/dwell" method reduces uncertainty and is therefore recommended by IEC

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

"At each temperature level of interest, the module temperature should be **stable**"

![](_page_22_Picture_4.jpeg)

# True cell temperature stability is ensured by continuously monitoring Voc

IV performance is determined by the true, internal solar cell temperature, which often differs from the temperature of the backside of the module that is measured.

![](_page_23_Figure_2.jpeg)

Module  $V_{oc}$  at temperatures from 85°C to 10°C in steps of 15°C

![](_page_23_Picture_4.jpeg)

# The error caused by measurement during natural cooldown can be up to 7%

![](_page_24_Figure_1.jpeg)

#### Natural cooldown method

![](_page_24_Picture_3.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_25_Picture_5.jpeg)

### Results: significant differences between PV technologies

![](_page_26_Figure_1.jpeg)

Source: Eternalsun Spire temperature coefficients study on 20 different PV modules, using Temperature Controlled Lab Flasher and HPLS for CdTe

![](_page_26_Picture_3.jpeg)

### Results: behavior is not always linear and the T.C. dependent on the range of interest

![](_page_27_Figure_1.jpeg)

Source: Eternalsun Spire temperature coefficients study on 11 different PV modules, using Temperature Controlled Lab Flasher

![](_page_27_Picture_3.jpeg)

## Results: front and rear temperature coefficients can differ significantly

![](_page_28_Figure_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_29_Picture_4.jpeg)

![](_page_29_Picture_5.jpeg)

#### LeTID & LID: the difference

![](_page_30_Picture_1.jpeg)

|                            | LID                                     | LeTID                                   |
|----------------------------|-----------------------------------------|-----------------------------------------|
| Expected cause             | Boron-Oxygen complexes or metal defects | Diffusing (moving) Hydrogen             |
| Mitigation                 | Add hydrogen                            | Less hydrogen or temperature treatment  |
| Timescale of effect        | 10-20 hours                             | 50-500 hours                            |
| Temperatures               | 25-50 °C                                | 60-90 °C                                |
| Potential extent of effect | 0-3% reported c-Si modules              | 0-8% reported c-Si modules (commercial) |

[1] Chan, Catherine et al. (2017). Modulation of Carrier-Induced Defect Kinetics in Multi-Crystalline Silicon PERC Cells Through Dark Annealing. Solar RRL [2] Wenham, Stuart (2016). UNSW Advanced Hydrogenation. SPREE Alumni Event presentation. 8th December, 2016

![](_page_30_Picture_4.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_31_Figure_4.jpeg)

![](_page_31_Picture_5.jpeg)

![](_page_31_Picture_6.jpeg)

#### Setup used for LeTID study

![](_page_32_Picture_1.jpeg)

- 1 sun Class AAA+ illumination
- 300 to 1200 nm spectrum
- 2 modules simultaneously

- 20 °C to 100 °C module temperature
- In-situ IV measurements
- Custom IV setpoints (e.g. Mpp) between IV

![](_page_32_Picture_8.jpeg)

Setup

![](_page_33_Figure_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_3.jpeg)

![](_page_33_Figure_4.jpeg)

![](_page_33_Picture_5.jpeg)

![](_page_33_Picture_6.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_34_Picture_3.jpeg)

#### LeTID: visibility in EL imaging

![](_page_35_Figure_1.jpeg)

LeTID - Eternalsun Spire Whitepaper - May 2019

![](_page_35_Picture_3.jpeg)

# Alternative procedure: current soaking and interval IV flashing

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_3.jpeg)

# Procedure: Benefit of in-situ IV vs current soaking and flashing

![](_page_37_Figure_1.jpeg)

# eternalsun**spire** 

![](_page_38_Figure_1.jpeg)

![](_page_38_Picture_2.jpeg)

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

![](_page_38_Picture_6.jpeg)

#### **LeTID Results**

![](_page_39_Figure_1.jpeg)

LeTID test at 85C, Mpp between in-situ IV's

Source: Eternalsun Spire LeTID study on 14 different PV modules, using High Performance Light Soaker

![](_page_39_Picture_4.jpeg)

#### **LeTID Results**

![](_page_40_Figure_1.jpeg)

Source: Eternalsun Spire LeTID study on 14 different PV modules, using High Performance Light Soaker

![](_page_40_Picture_3.jpeg)

### Thank you!

Providing high-end solar testing application knowledge, technology & services

eternal sun

Steady State AAA+ Sun Simulators Integrated in Climate Chambers

spire

![](_page_41_Picture_5.jpeg)

A+A+A+ 270ms Sun Simulators Advanced Temperature control

![](_page_41_Picture_7.jpeg)

![](_page_41_Picture_8.jpeg)

IV and EL test services at Rotterdam harbour warehouse

![](_page_41_Picture_10.jpeg)