BIGEYE

simulation under shadow conditions | Dr. A.R. Burgers

Use button 'Pictures' to change background Text-only start sheets can be added using 'New slide/Nieuwe dia'

SHADING IN BIFACIAL PV SYSTEMS

- Complex geometries
- > Partial shading of modules and cells
 - > Complex IV characteristics
- > What is the impact on system performance?

full I-V, 10-11 (solid/dash simul/meas)

20

Voltage (V)

30

-30 -40 -50

40

BIGEYE: ENERGY YIELD OF BIFACIAL SYSTEMS

- Full 3D geometry
 - > PV sheds
 - Diffuse reflectors
- Bifacial, partially transparent, modules

Total W/m2 (azi=61,hgt=0.8,beam=0.0,diff_hor=0.4

BIGEYE: MODELS

- > Deals with self shading, end of shed effects.
 - 3D view factor numerical approach
- > From GHI, DHI timeseries
- > Thermal model: $T_{cell} T_{ambient} = f(G_{fr,POA}, G_{re,POA}, U_{wind})$
- > Cell IV, partial shading
- Mismatch in IV on cell, module, string level.

3-D VIEW FACTORS

Infinitesimal view factors between elements dA₁ and dA₂

$$F_{1
ightarrow 2} = rac{\cos heta_1\cos heta_2}{\pi s^2} \mathrm{d}A_2 \;,$$

> Exchange over a larger area by integration

$$F_{1
ightarrow 2} = rac{1}{A_1} \int_{A_1} \int_{A_2} rac{\cos heta_1 \cos heta_2}{\pi s^2} \, \mathrm{d}A_2 \, \mathrm{d}A_1$$

- Invalid when sizes A₁, A₂ large compared to S
- Refine mesh: combine good accuracy with limited computational effort

BIGEYE: TOWARDS AN IV CURVE

- > Irradiance on PV surface
 - sub solar cell spatial resolution to resolve shades
- > Cell IV: curve per cell, including reverse characteristic

Block IV:

- 6x10 module: typically 3 bp diodes, each 2x10 cells
- > Series connect IV of cells in block
- > Apply (ideal) bypass diode characteristic
- String IV
 - Series connect IV of blocks

10

ECN > **TNO** innovation for life

2.5

2

block map

BIFACIAL VERTICAL PV

- > E/W facing PV
- > Shades cast by frame

IMPACT OF SHADING ON YIELD

- Different local optima in the P(V) curve
- Large voltage jumps associated with the optima
- > Mpp tracking algorithms in optimizers and inverters:
 - Local mpp tracking with high frequency
 - Global mpp search with low frequency

BIFOROT VALIDATION

- Set-up at Zurich University of Applied Science
- > Simulation programs
 - > PVsyst
 - MoBiDig (ISC)
 - BigEYE (ECN.TNO)
- > Conclusions from the comparison [1]
 - The three simulation tools
 - > give similar results
 - are in agreement with the experiment
 - bifacial yield modeling is reaching a stage of maturity.
 - [1] Accuracy of Simulated Data for Bifacial Systems with Varying Tilt Angles and Share of Diffuse Radiation, Hartmut Nussbaumer et Al, submitted to Solar Energy

BIGEYE VALIDATION: HOPEWELL SITE (NC) **ECN**, **TNO** for life

- > 1 MW commercial bifacial SAT site
 - With US DoE grant for additional instrumentation and validation
 - > T_{module} , albedo, $G_{POA,fr}$, $G_{POA,re}$
- > PV Evolution Labs Cypress Creek Renewables

BIGEYE: SYSTEM DESIGN

- > Site layout
 - Design e.g. for kWh/m², kWh/kWp
 - > With edge effects
 - > As function of e.g. albedo, geometry, transparency

SUMMARY

> Versatile

- Accurate, but fast
- Validated
 - In numerous smaller set-ups and projects
 - > Bifacial SAT production site to be reported soon.

Useful for

- providing reliable data for bankability of bifacial PV
- Design of complex PV systems
- Detailed analysis of measurement data

THANK YOU FOR YOUR ATTENTION

122212

TNO.NL/ECNPARTOFTNO

ECN > TNO innovation for life