BIFACIAL TECHNOLOGY AT HANWHA Q CELLS

<u>Dominik Buß</u>, Richard Won, Ronny Bakowskie, Florian Stenzel, Benjamin Lee, Marco Malagnino, René Zimmermann, Evelyn Herzog, Thomas Dinkel, Martina Queck

BifiPV Workshop 2019 Amsterdam | 2019-09-16

GLOBAL OPERATION FOR R&D AND PRODUCTION

^{*} Production capacity as of end of Q1, 2019

HURDLES TOWARDS BIFACIAL PV IN THE PAST

Hurdle	Past	Today
Cost effectiveness	Not cost effective	?
Front side efficiency	Suffering from Bifaciality	?
Number of BB	Low, bad FF for Bifacial	?
Field experience	Hardly reliable data	?
Simulation models	Hardly validated	?

EVOLUTION TOWARDS BIFACIAL CELLS

Challenge: Achieve Bifacial gain without losing front side efficiency

The cost effective Q.ANTUM process enables highly efficient BIFACIAL cells

BIFACIAL Q.ANTUM CELLS IN R&D

Latest R&D bifacial cell run:

- 12 bus bars technology
- Ultra fine line single screen printed front contacts
- Homogeneous emitter
- Batch size ~100 wafers

	Eff. [%]	Voc [mV]	Jsc [mA/cm²]	FF [%]
Median	22.9 ± 0.1	683.1 ± 1	41.0 ± 0.1	81.8 ± 0.2
Best cell*	23.1	684.8	41.1	81.9

Best produced bifacial cell with 23.1% front side efficiency

[1] F.Stenzel et. al: Approaching 23 % and Mass Production of Bifacial p-Cz Q.ANTUM PERC Solar Cells, PVSEC 2019, Marseille

^{*} Certified 12BB measurement at ISFH-CalTec

MODULE EVOLUTION

INFLUENCES ON BIFACIAL ENERGY YIELD

External influences which effect the energy output of bifacial systems

Various opportunities for yield improvement!

IN-FIELD CHARACTERIZATION OF VARIOUS INFLUENCES

Example: Prepared patches of various ground material

Spectrally sensitive c-Si Sensors

In-field characterization of different influences at our test field in Germany

SIMULATION: INFLUENCE OF RACK GEOMETRY

- Height over ground
- Row pitch
- Tilt angle

Optimization of system design parameters by simulation

13

SYSTEM OPTIMIZATION

Step 1: Put Bifacial module in existing field racking

Step 2: Optimize racking, increase height

Step 3: Boost Albedo

Step 4: Optimize tilt angle, increase row pitch

Rear shading

- **×** Height
- **×** Grass Ground
- **×** Tilt angle
- **✗** Row pitch

- ✓ Rear shading
- ✓ Height
- **×** Grass Ground
- × Tilt angle
- × Row pitch

- ✓ Rear shading
- √ Height
- ✓ White gravel
- ✗ Tilt angle
- Row pitch

- ✓ Rear shading
- ✓ Height
- ✓ White gravel
- ✓ Tilt angle
- √ Row pitch

Up to 20% Bifacial Energy Yield Gain with optimized design

CURRENT ACHIEVEMENTS FOR BIFACIAL TECHNOLOGY

Hurdle	Past	Today
Cost effectiveness	Not cost effective	Cost effective Q.ANTUM process
Front side efficiency	Suffering from Bifaciality	Delta ~ 0.1% _{abs}
Number of BB	Low, bad FF for Bifacial	Increased to 6 for high FF
Field experience	Hardly reliable data	Increasing database
Simulation models	Hardly validated	More and more validated models

The Q.ANTUM DUO technology enables cost effective high performance bifacial modules!

Q.PEAK DUO L-G5.3/BF

Q.PEAK DUO L-G5.3/BF features:

- Enabling lowest LCOE
- Glass/glass module
- White grid in between cell spacing to maintain P_{MPP.front}
- Extended power warranty of 30 years
- Low module weight of 26kg
- High power classes 380-400Wp
 and an efficiency rate of up to 19.9%
- Bifaciality 70%

No compromises in front side power