APPLICATION OF IEC 61853 MATRIX TO BIFACIAL PV

Roland Valckenborg and Bas van Aken

TNO innovation for life

History:

- > STC most important, and longest history in PV world.
- Additional parameters (e.g. NOCT) introduced in last couple of decades.

Is it possible to calculate the full year yield based on these datasheet value ?

New 61853 defines 7 $G_{POA} \times 4 T_{mod}$ matrix, leaving out the non-existing points:

Irradiance	Spectrum		M	odule temperature	
W·m ^{−2}		15 °C	25 °C	50 °C	75 °C
1 100	AM1,5	NA			1.1.1.1
1 000	AM1,5		STC		
800	AM1,5				
600	AM1,5				
400	AM1,5				NA
200	AM1,5			NA	NA
100	AM1,5			NA	NA

INTRODUCTION 'THE IEC-61853 MATRIX'

TNO innovation for life

- > Objective of 61853: **Testing and rating** of a PV-module (under well-defined climatic conditions)
 - Part 1: Irradiance and Temperature performance measurements and power rating
 - > Part 2: Spectral responsivity, incidence angle, and module operating temperature
 - Part 3: Calculation of Energy Rating of PV modules
 - > Part 4: Standard Reference Climatic Profiles
- Spectral-effects are described also in 61853:2, but less important than the matrix \rightarrow Future work

OUTLINE PRESENTATION

- > Our contribution:
 - > additional visualization and statistics
 - > for the **Research Purpose** of understanding outdoor performance of various PV technologies

innovation

se ae

- > Demonstrated on a monofacial BIPV façade module (part of PVPS Task15E round robin)
- > Use case comparison of monofacial with bifacial
- > Use case comparison of bifacial full-cells with bifacial half-cells

INDOOR VS. OUTDOOR DATA COLLECTION

- Matrix according to 61853-1 chapter 8.2 (indoor)
- G_{POA} and T_{mod} are set as close as possible to the values in the matrix
- V IV-flash from above: AOI = $90^{\circ} \rightarrow IAM = 1.0$

indoor

Indoor results presented in 6BV.4.7 'BIPV Round Robin Action of IEA PVPS Task15', P.IIIich et.al outdoor

Matrix according to 61853-1 chapter 8.4 (natural sunlight without tracker) taking all points without restriction of 8.3.2

Example of Taks15E round-robin sample (M17-02288)

- Measurement period = full year (2018-07-01 till 2019-06-29)
- Recording interval = 1 minute & sampling interval = 5 minutes
- > AOI varying \rightarrow IAM varying

innovation for life

se ac

Comparison between Indoor and Outdoor results are part of 2nd phase of IEA PVPS Task15', to be published in 2020

1. VISUALIZATION

2. SIGNIFICANCE OF EACH BIN-POINT

3. STATISTICS PER BIN

4. MORE BINS

TNO innovation for life

5. HIDING BINS WITH LOW-SIGNIFICANCE

innovation for life

- Less than x datapoints in bin (x = typical 5)
- Less than y% contribution of yield in bin to total yield (y% = typical 0.5%) •

AOI-EFFECT IN OUTDOOR DATA

IAM-EFFECT IN OUTDOOR

EXPERIMENTAL SETUP

- > Rooftop IV-tracing system at ECN.TNO in Petten, the Netherlands
- > Every 10 minutes, simultaneuos measurement of all module IV-curves and G_{POA} and T_{mod}
- South-facing, 30° tilt
- Irradiance sensors:
 - G_{POA}: Plane-Of-Array pyranometer and ref cells
 - G_{BOA}: Back of plane reference cells
 -) GHI
 - > Sun trackers for DNI and DHI

innovation for life

se ac

USE CASE 1: MONOFACIAL VS. BIFACIAL

- > Two n-PERT modules, left white back sheet, right glass-glass
- March-Dec 2018, 10 minute IV-tracing, ≈ 20.000 data points after removing sensor failures etc.
- > DC PR based on G_{POA}

1300-1400							81%	90%												96%	105%					
1200-1300	l n	nono	facia	al		95%	91%	88%	84%	91%					bifa	cial			109%	108%	99%	107%	94%			
1100-1200			=PT			90%	95%	96%	92%	93%	91%	89%	86%		n DI	DT			96%	110%	108%	104%	103%	102%	99%	100%
1000-1100		11-r L	_1\1			102%	99%	97%	93%	92%	90%	90%	88%						113%	110%	108%	104%	104%	102%	100%	98%
900-1000					105%	101%	100%	97%	94%	93%	91%	89%	88%					116%	113%	110%	107%	106%	104%	102%	100%	97%
800-900				110%	107%	103%	100%	97%	95%	93%	92%	90%	89%				123%	119%	114%	110%	108%	107%	105%	103%	100%	99%
700-800				109%	106%	103%	100%	98%	96%	94%	92%	91%	88%				120%	118%	114%	111%	109%	108%	106%	103%	102%	99%
600-700			113%	109%	107%	104%	100%	98%	96%	95%	93%	90%	91%				121%	118%	115%	112%	111%	109%	107%	104%	103%	102%
500-600			110%	111%	107%	105%	101%	99%	97%	96%	94%	90%					123%	118%	116%	114%	111%	111%	109%	106%	101%	
400-500			111%	109%	106%	104%	100%	98%	97%	96%	94%	93%				121%	120%	118%	117%	114%	113%	112%	112%	109%	109%	
300-400			110%	107%	105%	101%	99%	98%	97%	96%	95%					122%	120%	120%	117%	115%	115%	114%	111%	114%		
200-300		110%	109%	106%	104%	100%	99%	98%	97%	95%					121%	122%	120%	119%	117%	116%	117%	118%	119%			
100-200		109%	106%	105%	102%	98%	96%	91%	88%	92%					124%	121%	121%	120%	117%	119%	128%	117%	120%			
0-100	104%	107%	104%	101%	97%	94%	94%	89%	91%					122%	132%	122%	120%	120%	124%	140%	132%	129%				
	-10	-5	0	5	10	15	20	25	30	35	40	45	50	-10	-5	0	5	10	15	20	25	30	35	40	45	50
	-5	0	5	10	15	20	25	30	35	40	45	50	55	-5	0	5	10	15	20	25	30	35	40	45	50	55

o innovation for life

se ac

$\triangle PR = DIFFERENCE IN DC PR$

1300-1400							15%	15%					
1200-1300						13%	17%	11%	23%	2%			
1100-1200						5%	15%	12%	12%	11%	11%	10%	14%
1000-1100						11%	11%	11%	11%	12%	11%	10%	10%
900-1000					11%	12%	10%	11%	12%	11%	11%	10%	10%
800-900				13%	11%	11%	10%	11%	11%	11%	11%	10%	10%
700-800				12%	12%	12%	11%	11%	12%	12%	11%	11%	11%
600-700				12%	11%	11%	12%	13%	12%	13%	11%	12%	12%
500-600				12%	11%	12%	13%	13%	14%	13%	13%	11%	
400-500			11%	11%	12%	14%	14%	14%	14%	16%	15%	16%	
300-400			13%	12%	14%	16%	16%	17%	17%	15%	19%		
200-300		12%	13%	14%	15%	17%	18%	19%	21%	24%			
100-200		15%	15%	16%	18%	19%	22%	37%	29%	28%			
0-100	18%	25%	19%	19%	23%	29%	46%	43%	38%				
	-10	-5	0	5	10	15	20	25	30	35	40	45	50
	-5	0	5	10	15	20	25	30	35	40	45	50	55

TNO innovation for life

- Gain of $\triangle PR=11\%$ at high irradiance (700-1100 G_{POA})
- Increasing to $\Delta PR > 20\%$ gain at low G_{POA}
- Increasing to even higher $\Delta PR \approx 40\%$ at high T_{mod} and low G_{POA} : summer evenings

$$G_{\text{total}} := G_{\text{POA}} + G_{\text{BOA}}$$

- However, well-known that G_{BOA} cannot be fully exploited.
- Assume bifaciality factor = 85%. Then $G_{BIF} := G_{POA} + 0.85 * G_{BOA}$

L300-1400							81%	90%											96%	96%	94%	95%	90%			
L200-1300	l m	nono	facia	al		95%	91%	88%	84%	91%					bifa	cial			89%	99%	96%	92%	91%	91%	89%	90%
100-1200			DT			90%	95%	96%	92%	93%	91%	89%	86%						101%	98%	97%	93%	94%	92%	90%	88%
L000-1100		11-F				102%	99%	97%	93%	92%	90%	90%	88%		11-PI			102%	100%	98%	96%	95%	93%	92%	90%	88%
900-1000					105%	101%	100%	97%	94%	93%	91%	89%	88%				108%	105%	101%	98%	96%	95%	93%	92%	90%	88%
300-900				110%	107%	103%	100%	97%	95%	93%	92%	90%	89%				105%	104%	100%	98%	96%	95%	94%	92%	91%	88%
700-800				109%	106%	103%	100%	98%	96%	94%	92%	91%	88%				105%	104%	101%	98%	97%	95%	94%	91%	90%	89%
500-700			113%	109%	107%	104%	100%	98%	96%	95%	93%	90%	91%				106%	103%	101%	98%	96%	95%	94%	91%	88%	
500-600			110%	111%	107%	105%	101%	99%	97%	96%	94%	90%				107%	105%	102%	100%	97%	95%	95%	95%	92%	91%	
100-500			111%	109%	106%	104%	100%	98%	97%	96%	94%	93%				105%	104%	101%	98%	96%	95%	93%	89%	93%	92%	
300-400			110%	107%	105%	101%	99%	98%	97%	96%	95%				106%	103%	102%	99%	96%	94%	94%	93%	92%	92%		
200-300		110%	109%	106%	104%	100%	99%	98%	97%	95%					102%	102%	99%	96%	94%	92%	90%	88%	85%			
L00-200		109%	106%	105%	102%	98%	96%	91%	88%	92%					103%	100%	97%	94%	88%	84%	81%	77%				
0-100	104%	107%	104%	101%	97%	94%	94%	89%	91%					98%	99%	98%	94%	89%	84%	77%	75%	76%				
	-10	-5	0	5	10	15	20	25	30	35	40	45	50	-10	-5	0	5	10	15	20	25	30	35	40	45	50
	-5	0	5	10	15	20	25	30	35	40	45	50	55	-5	0	5	10	15	20	25	30	35	40	45	50	55

Bifacial DC PR's more/less aligned with normal behaviour (Temperature loss and R series loss)

USE CASE 2: FULL CELLS VS. HALF CELLS

- > Two bifacial n-PERT modules, left full cell, right half cell
- > Booth glass-glass modules and BoM identical
- March-Dec 2018, 10 minute IV-tracing, \approx 20.000 data points after removing sensor failures etc.

1300-1400							97%	105%												97%	106%					
1200-1300		Full (Cells	S		100%	109%	96%	107%	93%				F	Half	Cells	S		108%	107%	96%	107%	96%	103%		
1100-1200			Б \//	n			107%	108%	105%	103%	101%	101%	98%		2∩	6 111	n			106%	108%	106%	103%	102%	101%	98%
1000-1100		~=29	5 00	ρ	118%	114%	111%	109%	104%	104%	102%	100%			-30	0 00	μ		115%	110%	109%	105%	104%	102%	100%	100%
900-1000					116%	113%	112%	108%	106%	104%	103%	100%	98%					115%	113%	111%	108%	106%	104%	102%	100%	97%
800-900				122%	118%	113%	112%	109%	107%	106%	104%	100%	99%				123%	118%	112%	111%	108%	106%	104%	102%	99%	97%
700-800				121%	117%	114%	112%	110%	108%	107%	104%	101%	99%				120%	117%	113%	110%	108%	106%	104%	103%	100%	98%
600-700			127%	121%	117%	115%	113%	112%	110%	107%	104%	101%					120%	116%	113%	112%	109%	107%	105%	103%	99%	
500-600			124%	122%	117%	118%	114%	113%	111%	111%	106%	101%				122%	120%	114%	116%	111%	110%	108%	109%	104%	100%	
400-500			126%	120%	119%	119%	116%	114%	112%	111%	105%	105%				121%	118%	116%	116%	112%	110%	109%	106%	101%	103%	
300-400			126%	118%	120%	119%	117%	116%	114%	112%	108%					121%	115%	116%	114%	112%	111%	110%	108%	105%	103%	
200-300		127%	122%	121%	120%	119%	118%	116%	114%	113%						118%	116%	115%	114%	112%	111%	110%	109%			
100-200		129%	122%	122%	121%	118%	118%	120%	117%	114%						116%	115%	115%	112%	113%	117%	112%	109%			
0-100	128%	136%	123%	122%	123%	127%	143%	146%	132%					99%	124%	112%	112%	113%	117%	134%	130%	125%				
	-5	0	5	10	15	20	25	30	35	40	45	50	55	-5	0	5	10	15	20	25	30	35	40	45	50	55
	0	5	10	15	20	25	30	35	40	45	50	55	60	0	5	10	15	20	25	30	35	40	45	50	55	60

innovation

se ac

△PR (= HALF CELLS – FULL CELLS)

0

5

10

15

20

25

30

35

40

45

\$@a@ 1300-1400 0% 1% 1200-1300 -1% 1% 4% 9% 1% 1100-1200 0% 1% 1% 1% 1% 0% 1% 1000-1100 2% 1% 0% 1% 0% 1% 1% 900-1000 1% 0% 0% 0% 0% 0% 0% 0% 0% 800-900 2% 1% 0% 0% 0% 0% 0% 0% 0% -1% 700-800 0% 1% 0% -1% -1% -1% -1% 0% 0% -1% 600-700 0% 0% -1% -1% -2% -2% -1% -1% -1% 500-600 -1% -2% -2% -2% -2% -2% 0% -1% -1% -1% 400-500 -3% -2% -2% -3% -3% -3% -3% -3% -2% -1% 300-400 -4% -2% -3% -4% -4% -3% -3% -2% -4% 200-300 -4% -4% -4% -4% -4% -4% -4% -3% 100-200 -6% -6% -5% -6% -4% -2% -3% -4% 0-100 -28% -11% -10% -10% -10% -9% -7% -15% -6% -5 5 10 15 20 25 30 35 40 45 50 55 0

50 55

⁶⁰ Why such a low PR?

o innovation for life

FF FOR FULL CELLS (L) AND HALF CELLS (R)

Normal behaviour: at high G_{POA} => high I_{sc} => high R losses => low FF

And also normal behaviour: at high T_{mod} => low V => low FF

1300-1400							72%	74%						1							75%	78%					
1200-1300		Full (Cells	S		80%	75%	72%	74%	73%					H	Half	Cells	S		80%	78%	75%	78%	75%	76%		
1100-1200							75%	76%	75%	74%	74%	74%	73%								77%	78%	78%	76%	77%	76%	75%
1000-1100					78%	77%	77%	77%	76%	75%	75%	74%								79%	79%	78%	78%	78%	77%	76%	76%
900-1000					79%	78%	78%	77%	76%	76%	75%	75%	74%						79%	79%	79%	78%	78%	78%	77%	77%	76%
800-900				81%	80%	79%	78%	78%	77%	77%	76%	75%	75%					81%	80%	79%	79%	79%	79%	78%	78%	77%	77%
700-800				81%	80%	79%	79%	78%	78%	77%	77%	76%	76%					81%	81%	80%	80%	79%	79%	79%	79%	78%	78%
600-700			82%	81%	81%	80%	79%	79%	78%	78%	77%	77%						81%	81%	81%	80%	80%	80%	79%	79%	78%	
500-600			82%	82%	81%	81%	80%	80%	79%	79%	78%	77%					82%	82%	81%	81%	81%	81%	80%	80%	79%	78%	
400-500			83%	82%	82%	81%	81%	80%	80%	80%	78%	78%					82%	82%	82%	82%	81%	81%	81%	80%	80%	80%	
300-400			83%	82%	82%	82%	81%	81%	81%	80%	78%						82%	81%	82%	82%	82%	82%	81%	81%	80%	79%	
200-300		84%	83%	83%	82%	82%	81%	81%	81%	79%						82%	82%	82%	82%	82%	82%	81%	81%	80%			
100-200		84%	83%	83%	83%	82%	81%	79%	80%	81%						83%	83%	83%	83%	82%	82%	81%	81%	81%			
0-100	84%	84%	83%	83%	82%	82%	82%	81%	82%						72%	83%	82%	82%	82%	82%	83%	82%	83%				
	-5		5	10	15	20	25	30	35	40	45	50			-5		5	10	15	20	25	30	35	40	45	50	
		5	10	15	20	25	30	35	40	45	50	55				5	10	15	20	25	30	35	40	45	50	55	

innovation for life

s¢ac

DIFFERENCE IN FF (HALF CELLS – FULL CELLS)

\$6ac

1300-1400							3%	4%					
1200-1300						0%	3%	3%	3%	2%			
1100-1200							2%	2%	2%	2%	3%	3%	2%
1000-1100						2%	2%	2%	2%	2%	2%	2%	
900-1000					0%	1%	2%	1%	2%	2%	2%	2%	2%
800-900				0%	0%	1%	1%	1%	2%	2%	2%	2%	2%
700-800				0%	0%	1%	1%	1%	2%	2%	2%	2%	2%
600-700				0%	0%	1%	1%	1%	1%	2%	2%	1%	
500-600			0%	0%	0%	1%	1%	1%	1%	2%	1%	2%	
400-500			0%	0%	0%	0%	1%	1%	1%	1%	1%	2%	
300-400			-1%	-1%	0%	0%	1%	0%	1%	0%	2%		-
200-300		-1%	-1%	-1%	0%	0%	0%	0%	0%	1%			
100-200		-1%	-1%	-1%	0%	0%	1%	2%	2%	0%		N	othing really significant
0-100		-1%	-1%	0%	-1%	0%	0%	1%	0%				in this AFF
	-5		5	10	15	20	25	30	35	40	45	50	
	0	5	10	15	20	25	30	35	40	45	50	55	What is happening at
													IOW G _{POA} ?

I_SC DIVIDED BY G_POA

NO innovation for life

SØae

> Equal or Different ? See next slide.

DIFFERENCE IN (BIFACIAL) I_SC/G_POA

o innovation for life

SØaG

1300-1400							-0.1	0.0					
1200-1300						1.2	-0.1	0.1	-0.1	0.3			
1100-1200							0.1	0.1	0.1	0.1	0.1	0.0	0.2
1000-1100						0.3	0.1	0.2	0.1	0.0	0.1	0.2	
900-1000					0.3	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1
800-900				0.4	0.3	0.2	0.2	0.2	0.1	0.0	0.0	0.1	0.1
700-800				0.3	0.3	0.2	0.2	0.1	0.0	0.0	0.0	0.1	0.1
600-700				0.3	0.3	0.2	0.2	0.0	0.0	0.0	0.0	0.0	
500-600			0.2	0.2	0.2	0.2	0.1	-0.1	-0.1	0.0	0.0	0.1	
400-500			0.1	0.2	0.1	0.1	0.0	-0.1	-0.1	-0.1	-0.1	0.0	
300-400			0.1	0.2	0.1	0.0	-0.1	-0.1	-0.1	0.0	-0.1		
200-300		0.0	0.1	0.1	-0.1	-0.1	-0.1	-0.1	0.0	-0.1			
100-200		-0.1	-0.1	-0.1	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1			
0-100		-0.6	-0.6	-0.5	-0.5	-0.5	-0.3	-1.2	-0.2				
	-5	0	5	10	15	20	25	30	35	40	45	50	55
	0	5	10	15	20	25	30	35	40	45	50	55	60

Found root cause ! Clearly drop in I_{sc}/G_{POA} for half-cells at lower irradiance.

> Damages due to cutting increase recombination. At low irradiance (low injection) most sensitive.

CONCLUSION

61853-MATRIX STYLE IS PERFECT TOOL FOR RESEARCH ON PV TECHNOLOGIES

- Making the 7x4 matrix more fine with 100 W/m² and 5°C bins.
- Plotting not only P_{MPP}, but any PV-panel parameter (e.g. V_{OC}, V_{MPP}, | PR).
- > Analyzing statistics per bin is a tool for cleaning outdoor data.
- > Presented use cases:
 - 1. Comparison of monofacial with bifacial:
 - ΔPR gain highest for low G_{POA}
 - For bifi: PR-matrix based on G_{BIF} looks similar to mono PR-matrix.
 - Hence irradiance boost at low G_{POA}
 - 2. Comparison of bifacial full-cells with bifacial half-cells:
 - ΔPR drop for low G_{POA} for half-cells not caused by FF (?)
 - Root cause found in Δ (I_{sc}/G_{POA})-matrix! Effect attributed to cutting losses

nnovatio

THE REFINED 61853-MATRIX IS THE TOOL FOR <u>ENERGY RATING AND ANALYSIS</u> OF PV TECHNOLOGIES, LIKE BIFACIAL

THANK YOU FOR YOUR ATTENTION