
) History:
) STC most important, and longest history in PV world.
) Additional parameters (e.g. NOCT) introduced in last couple of decades.

Is it possible to calculate the full year yield based on these datasheet value?
) New 61853 defines $7 G_{\text {POA }} \times 4 T_{\text {mod }}$ matrix, leaving out the non-existing points:

Irradiance	Spectrum		Module temperature		
W.m ${ }^{-2}$		$15^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
1100	AM1,5	NA			
1000	AM1,5				
800	AM1,5				
600	AM1,5				
400	AM1,5			NA	NA
200	AM1,5			NA	NA
100	AM1,5				

) Objective of 61853: Testing and rating of a PV-module (under well-defined climatic conditions)
) Part 1: Irradiance and Temperature performance measurements and power rating
) Part 2: Spectral responsivity, incidence angle, and module operating temperature
) Part 3: Calculation of Energy Rating of PV modules
) Part 4: Standard Reference Climatic Profiles
) Spectral-effects are described also in 61853:2, but less important than the matrix \rightarrow Future work
) Our contribution:
) additional visualization and statistics
) for the Research Purpose of understanding outdoor performance of various PV technologies
) Demonstrated on a monofacial BIPV façade module (part of PVPS Task15E round robin)
) Use case comparison of monofacial with bifacial
) Use case comparison of bifacial full-cells with bifacial half-cells

indoor

outdoor

, Matrix according to 61853-1 chapter 8.4 (natural sunlight without tracker) taking all points without restriction of 8.3.2
) Example of Taks15E round-robin sample (M17-02288)
) Measurement period = full year (2018-07-01 till 2019-06-29)
) Recording interval $=1$ minute \& sampling interval $=5$ minutes

Action of IEA PVPS Task15', P.Illich et.al
, Matrix according to 61853-1 chapter 8.2 (indoor)
) $G_{\text {POA }}$ and $T_{\text {mod }}$ are set as close as possible to the values in the matrix
) IV-flash from above: $\mathrm{AOI}=90^{\circ} \rightarrow \mathrm{IAM}=1.0$
) Indoor results presented in 6BV.4.7 'BIPV Round Robin
) AOI varying \rightarrow IAM varying
, Comparison between Indoor and Outdoor results are part of $2^{\text {nd }}$ phase of IEA PVPS Task15', to be published in 2020

1. VISUALIZATION

200
175
150
125 इ
100 Q
75
-50
25
0
2. SIGNIFICANCE OF EACH BIN-POINT

3. STATISTICS PER BIN

4. HIDING BINS WITH LOW-SIGNIFICANCE
©

Option to hide bins (discard from visualization) based on criterium:

- Less than x datapoints in bin ($x=$ typical 5)
- Less than y\% contribution of yield in bin to total yield (y\% = typical 0.5\%)

AOI-EFFECT IN OUTDOOR DATA

outdoor

As expected the higher AOI can be found in the lower irradiance bins.

IAM-EFFECT IN OUTDOOR

-

The lowest bin
($G_{\text {POA }}<100 \mathrm{~W} / \mathrm{m}^{2}$) is nearly completely 'destroyed' by the IAM-effect!

EXPERIMENTAL SETUP

) Rooftop IV-tracing system at ECN.TNO in Petten, the Netherlands
) Every 10 minutes, simultaneuos measurement of all module IV-curves and $G_{\text {POA }}$ and $T_{\text {mod }}$
) South-facing, 30° tilt
) Irradiance sensors:
) $G_{\text {POA }}$: Plane-Of-Array pyranometer and ref cells
) $G_{B O A}$: Back of plane reference cells
) GHI
) Sun trackers for DNI and DHI

USE CASE 1: MONOFACIAL VS. BIFACIAL

) Two n-PERT modules, left white back sheet, right glass-glass
) March-Dec 2018, 10 minute IV-tracing, ≈ 20.000 data points after removing sensor failures etc.
) DC PR based on $G_{\text {POA }}$

$\begin{aligned} & 1300-1400 \\ & 1200-1300 \end{aligned}$	monofacialn-PERT				81\%			90\%				89\%	86\%
						95\%	91\%	88\%	84\%	91\%			
1100-1200						90\%	95\%	96\%	92\%	93\%	91\%		
1000-1100						102\%	99\%	97\%	93\%	92\%	90\%	90\%	88\%
900-1000					105\%	101\%	100\%	97\%	94\%	93\%	91\%	89\%	88\%
800-900				110\%	107\%	103\%	100\%	97\%	95\%	93\%	92\%	90\%	89\%
700-800				109\%	106\%	103\%	100\%	98\%	96\%	94\%	92\%	91\%	88\%
600-700			113\%	109\%	107\%	104\%	100\%	98\%	96\%	95\%	93\%	90\%	91\%
500-600			110\%	111\%	107\%	105\%	101\%	99\%	97\%	96\%	94\%	90\%	
400-500			111\%	109\%	106\%	104\%	100\%	98\%	97\%	96\%	94\%	93\%	
300-400			110\%	107\%	105\%	101\%	99\%	98\%	97\%	96\%	95\%		
200-300		110\%	109\%	106\%	104\%	100\%	99\%	98\%	97\%	95\%			
100-200		109\%	106\%	105\%	102\%	98\%	96\%	91\%	88\%	92\%			
0-100	104\%	107\%	104\%	101\%	97\%	94\%	94\%	89\%	91\%				
	-10	-5	0	5	10	15	20	25	30	35	40	45	50
	-5	0	5	10	15	20	25	30	35	40	45	50	55

bifacial n-PERT						96\%	105\%					
					109\%	108\%	99\%	107\%	94\%			
					96\%	110\%	108\%	104\%	103\%	102\%	99\%	100\%
					113\%	110\%	108\%	104\%	104\%	102\%	100\%	98\%
				116\%	113\%	110\%	107\%	106\%	104\%	102\%	100\%	97\%
			123\%	119\%	114\%	110\%	108\%	107\%	105\%	103\%	100\%	99\%
			120\%	118\%	114\%	111\%	109\%	108\%	106\%	103\%	102\%	99\%
			121\%	118\%	115\%	112\%	111\%	109\%	107\%	104\%	103\%	102\%
			123\%	118\%	116\%	114\%	111\%	111\%	109\%	106\%	101\%	
		121\%	120\%	118\%	117\%	114\%	113\%	112\%	112\%	109\%	109\%	
		122\%	120\%	120\%	117\%	115\%	115\%	114\%	111\%	114\%		
	121\%	122\%	120\%	119\%	117\%	116\%	117\%	118\%	119\%			
	124\%	121\%	121\%	120\%	117\%	119\%	128\%	117\%	120\%			
122\%	132\%	122\%	120\%	120\%	124\%	140\%	132\%	129\%				
-10	-5	0	5	10	15	20	25	30	35	40	45	50
-5	0	5	10	15	20	25	30	35	40	45	50	55

$\triangle P R=D I F F E R E N C E$ IN DC PR

1300-1400							15\%	15\%					
1200-1300						13\%	17\%	11\%	23\%	2\%			
1100-1200						5\%	15\%	12\%	12\%	11\%	11\%	10\%	14\%
1000-1100						11\%	11\%	11\%	11\%	12\%	11\%	10\%	10\%
900-1000					11\%	12\%	10\%	11\%	12\%	11\%	11\%	10\%	10\%
800-900				13\%	11\%	11\%	10\%	11\%	11\%	11\%	11\%	10\%	10\%
700-800				12\%	12\%	12\%	11\%	11\%	12\%	12\%	11\%	11\%	11\%
600-700				12\%	11\%	11\%	12\%	13\%	12\%	13\%	11\%	12\%	12\%
500-600				12\%	11\%	12\%	13\%	13\%	14\%	13\%	13\%	11\%	
400-500			11\%	11\%	12\%	14\%	14\%	14\%	14\%	16\%	15\%	16\%	
300-400			13\%	12\%	14\%	16\%	16\%	17\%	17\%	15\%	19\%		
200-300		12\%	13\%	14\%	15\%	17\%	18\%	19\%	21\%	24\%			
100-200		15\%	15\%	16\%	18\%	19\%	22\%	37\%	29\%	28\%			
0-100	18\%	25\%	19\%	19\%	23\%	29\%	46\%	43\%	38\%				
	-10	-5	0	5	10	15	20	25	30	35	40	45	50
	-5	0	5	10	15	20	25	30	35	40	45	50	55

- Gain of $\Delta P R=11 \%$ at high irradiance ($700-1100 G_{P O A}$)
- Increasing to $\triangle P R>20 \%$ gain at low $G_{P O A}$
- Increasing to even higher $\triangle P R \approx 40 \%$ at high $T_{\text {mod }}$ and low $G_{P O A}$: summer evenings
) $G_{\text {total }}:=G_{P O A}+G_{B O A}$
) However, well-known that $G_{B O A}$ cannot be fully exploited.
) Assume bifaciality factor $=85 \%$. Then $G_{B I F}:=G_{P O A}+0.85 * G_{B O A}$

bifacial n-PERT					96\%	96\%	94\%	95\%	90\%			
					89\%	99\%	96\%	92\%	91\%	91\%	89\%	90\%
					101\%	98\%	97\%	93\%	94\%	92\%	90\%	88\%
				102\%	100\%	98\%	96\%	95\%	93\%	92\%	90\%	88\%
- 108\%				105\%	101\%	98\%	96\%	95\%	93\%	92\%	90\%	88\%
105\%				104\%	100\%	98\%	96\%	95\%	94\%	92\%	91\%	88\%
105\%				104\%	101\%	98\%	97\%	95\%	94\%	91\%	90\%	89\%
106\%				103\%	101\%	98\%	96\%	95\%	94\%	91\%	88\%	
$\begin{aligned} & 107 \% \\ & 105 \% \end{aligned}$			105\%	102\%	100\%	97\%	95\%	95\%	95\%	92\%	91\%	
			104\%	101\%	98\%	96\%	95\%	93\%	89\%	93\%	92\%	
	106\%	103\%	102\%	99\%	96\%	94\%	94\%	93\%	92\%	92\%		
	102\%	102\%	99\%	96\%	94\%	92\%	90\%	88\%	85\%			
	103\%	100\%	97\%	94\%	88\%	84\%	81\%	77\%				
98\%	99\%	98\%	94\%	89\%	84\%	77\%	75\%	76\%				
-10	-5	0	5	10	15	20	25	30	35	40	45	50
-5	0	5	10	15	20	25	30	35	40	45	50	55

, Bifacial DC PR's more/less aligned with normal behaviour (Temperature loss and R series loss)

USE CASE 2: FULL CELLS VS. HALF CELLS

) Two bifacial n-PERT modules, left full cell, right half cell
, Booth glass-glass modules and BoM identical
) March-Dec 2018, 10 minute IV-tracing, ≈ 20.000 data points after removing sensor failures etc.

\triangle PR (= HALF CELLS - FULL CELLS)

1300-1400							0\%	1\%					
1200-1300						9\%	-1\%	1\%	1\%	4\%			
1100-1200							0\%	1\%	1\%	1\%	1\%	0\%	1\%
1000-1100						2\%	1\%	0\%	1\%	0\%	1\%	1\%	
900-1000					1\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
800-900				2\%	1\%	0\%	0\%	0\%	0\%	0\%	-1\%	0\%	0\%
700-800				0\%	1\%	0\%	-1\%	-1\%	-1\%	-1\%	0\%	0\%	-1\%
600-700				0\%	0\%	-1\%	-1\%	-2\%	-2\%	-1\%	-1\%	-1\%	
500-600			-1\%	-1\%	-2\%	-1\%	-2\%	-2\%	-2\%	-2\%	-1\%	0\%	
400-500			-3\%	-2\%	-2\%	-3\%	-3\%	-3\%	-3\%	-3\%	-2\%	-1\%	
300-400			-4\%	-2\%	-3\%	-4\%	-4\%	-4\%	-3\%	-3\%	-2\%		
200-300			-4\%	-4\%	-4\%	-4\%	-4\%	-4\%	-4\%	-3\%			
100-200			-6\%	-6\%	-5\%	-6\%	-4\%	-2\%	-3\%	-4\%			
0-100	-28\%	-11\%	-10\%	-10\%	-10\%	-9\%	-7\%	-15\%	-6\%				
	-5	0	5	10	15	20	25	30	35	40	45	50	55
	0	5	10	15	20	25	30	35	40	45	50	55	60

Why such a low PR?
) Normal behaviour: at high $G_{P O A}=>$ high $I_{s c}=>$ high R losses => low FF
) And also normal behaviour: at high $T_{\text {mod }}=>$ low $V=>$ low $F F$

I_SC DIVIDED BY G_POA

) Equal or Different? See next slide.

$1300-1400$													
$1200-1300$													
$1100-1200$							-0.1	0.0					
$1000-1100$						-0.1	0.1	-0.1	0.3				
$900-1000$					0.3	0.1	0.1	0.1	0.1	0.1	0.0	0.2	
$800-900$				0.3	0.2	0.2	0.2	0.1	0.0	0.1	0.2		
$700-800$			0.4	0.3	0.2	0.2	0.2	0.1	0.0	0.1	0.1	0.1	
$600-700$			0.3	0.3	0.2	0.2	0.1	0.0	0.0	0.0	0.1	0.1	0.1
$500-600$				0.3	0.3	0.2	0.2	0.0	0.0	0.0	0.0	0.0	
$400-500$			0.1	0.2	0.2	0.2	0.1	-0.1	-0.1	0.0	0.0	0.1	
$300-400$			0.1	0.2	0.1	0.1	0.1	0.0	-0.1	-0.1	-0.1	-0.1	0.0
$200-300$		0.0	0.1	0.1	-0.1	-0.1	-0.1	-0.1	-0.1	0.0	-0.1		
$100-200$		-0.1	-0.1	-0.1	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1			
$0-100$		-0.6	-0.6	-0.5	-0.5	-0.5	-0.3	-1.2	-0.2				
	-5	0	5	10	15	20	25	30	35	40	45	50	55
	0	5	10	15	20	25	30	35	40	45	50	55	60

) Found root cause! Clearly drop in $\mathrm{I}_{\mathrm{sc}} / \mathrm{G}_{\text {POA }}$ for half-cells at lower irradiance.
) Damages due to cutting increase recombination. At low irradiance (low injection) most sensitive.

61853-MATRIX STYLE IS PERFECT TOOL FOR RESEARCH ON PV TECHNOLOGIES

) Making the 7×4 matrix more fine with $100 \mathrm{~W} / \mathrm{m}^{2}$ and $5^{\circ} \mathrm{C}$ bins.
) Plotting not only $\mathrm{P}_{\mathrm{MPP}}$, but any PV-panel parameter (e.g. $\mathrm{V}_{\mathrm{OC}}, \mathrm{V}_{\mathrm{MPP}}$, PR).
) Analyzing statistics per bin is a tool for cleaning outdoor data.
) Presented use cases:

1. Comparison of monofacial with bifacial:

- Δ PR gain highest for low $G_{\text {POA }}$

- For bifi: PR-matrix based on $G_{\text {BIF }}$ looks similar to mono PR-matrix.
- Hence irradiance boost at low $G_{P O A}$

2. Comparison of bifacial full-cells with bifacial half-cells:

- $\Delta P R$ drop for low $G_{P O A}$ for half-cells not caused by FF (?)
- Root cause found in $\Delta\left(I_{s c} / G_{P O A}\right)$-matrix! Effect attributed to cutting losses

THE REFINED 61853-MATRIX IS THE TOOL FOR ENERGY RATING AND ANALYSIS OF PV TECHNOLOGIES, LIKE BIFACIAL

