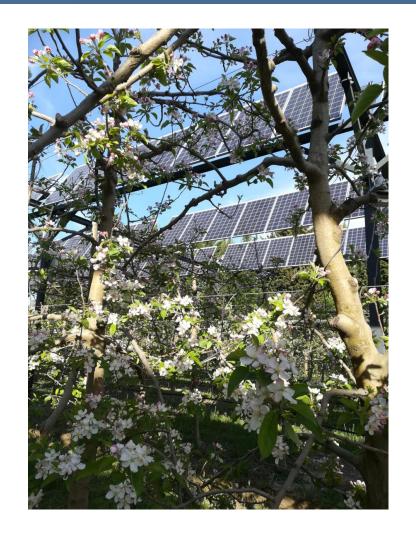


Benefit of bifacial PV panels for agrivoltaics

Date 16/09/2019

Contents

Motivations of dynamic agrivoltaics


Sun'Agri project

System overview

System specificities for bifacial panels

Research and development

AV-Studio

Motivations of dynamic agrivoltaics

Benefit of bifacial PV panels for agrivoltaics

Worldwide food production must be increased by 56% by 2050 to meet the needs of the population while adapting to climate change

PV development requires large surfaces but without land artificialization

In France, fixed south-pointing panels would create inhomogeneity in ground incoming radiation while causing too much shade around wintertime

Dynamic agrivoltaics

A breakthrough solution combining crops and electricity production over one surface, without being detrimental to the crops

Sun'Agri project

Benefit of bifacial PV panels for agrivoltaics

5 research facilities

Apple trees

Grapevines

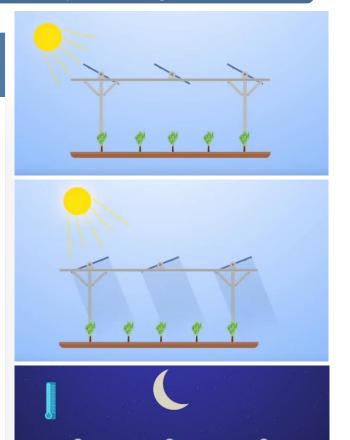
Vegetables (starting in 2020)

Field crops
Grapevines (fixed panels)

1 large scale demonstrator

- 4,5 hectares with grapevines and PV panels
- 2,1 MWp
- 3 hectares of control plot without PV
- Agronomical follow-up and real-time microclimate monitoring

System overview


Benefit of bifacial PV panels for agrivoltaics

PV specificities

- Panel steering will follow agronomic purposes and differ from pure solar tracking, inducing electricity production losses.
- Independency of panel steering with respect to the power producer is needed to ensure priority to the crop
- On each present and future demonstrator, a control area without PV is needed to attest the impact of the system on crop growth

Impact on microclimate

- 1-axis rotating panels can avoid shade or rain interception at any time of day (with an extended angle range compared to traditional trackers)
- Shading limits hydric stress and reduces crop temperature
- Flat panels during night reduce thermal losses and therefore frost impact

System specificities for bifacial panels

Benefit of bifacial PV panels for agrivoltaics

Panel height ≈ 5 m → less self shading

More light arrives on the ground

Panel transparency — more light for crops

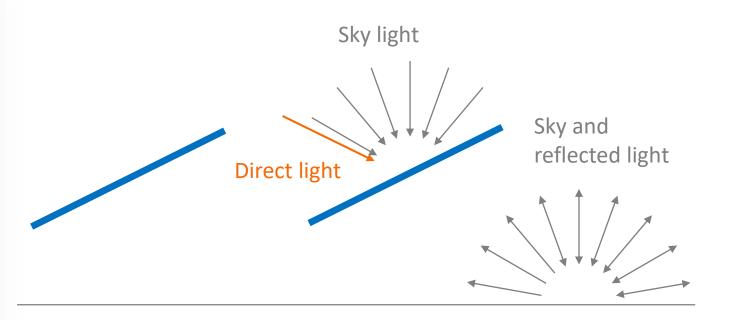
Albedo is low

Structure is difficult to adapt

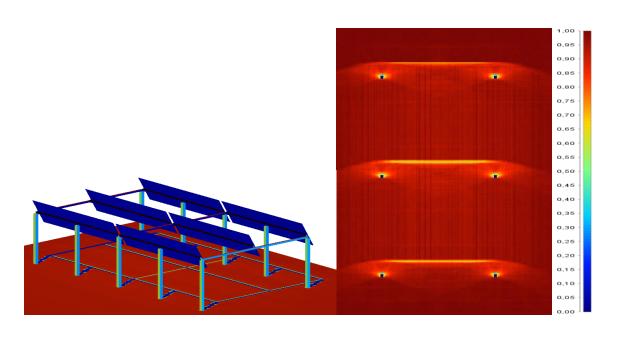
Panel steering is not pure solar tracking

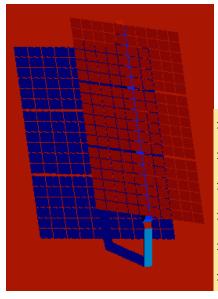
Research and development

Benefit of bifacial PV panels for agrivoltaics


- Bifacial modules have been developed by Photowatt, partner in Sun'Agri 3
- On-site tests are planned on our demonstrator
- Future demonstrators will all be equipped with bifacial PV
- An in-house software was developed to steer the panels and simulate electricity production and incoming light on the crops

Principles


- Sky is discretized in a finite number of direction
- Incoming radiation is calculated for every direction and shades are projected
- Light is reflected on the ground in the same finite set of directions in an isotropic way
- Mean incoming radiation is calculated for each cell
- One diode model determines the power of each cell
- Total power is calculated with electrical architecture at module and plant level



Incoming radiation cartography

Bifacial production with structure shade

1031	1031	1033	1028	1015	985	996	1023 1024	1027	1027	1026
1031	1031	1033	1028	1015	985	996	1023 1024	1027	1027	1026
1031	1031	1033	1028	1015	986	996	1023 1024	1027	1027	1026
1031	1031	1033	1028	1015	985	996	1023 1024	1027	1027	1026
1031	1031	1033	1028	1015	985	996	1023 1024	1027	1027	1026
1031	1031	1033	1028	1015	985	996	1023 1024	1027	1027	1026


AV-Studio: results

Benefit of bifacial PV panels for agrivoltaics

- Bifacial gain is around 5 % with pure solar tracking (height ≈ 5 m, GCR ≈ 0.4, albedo ≈ 0.2)
- Tube shade on the rear side represents about 1 % loss (mainly due to radiation loss rather than inhomogeneity)
- Putting the tube between the panels (in 2H for example) doesn't improve production significantly for this level of albedo
- Steering optimization (less steep when cloudy) doesn't change significantly with bifacial, but gain is lower

QUESTIONS AND ANSWERS

Contact us:

Jean Garcin

jean.garcin@sunr.fr