

IEA PVPS Task 13: Subtask 1.2: Bifacial PV -**Bifacial PV Modeling** Comparison

Joshua S. Stein Ph.D - Sandia National Laboratories, USA Christian Reise Ph.D – Fraunhofer ISE, Germany

ISE

jsstein@sandia.gov christian.reise@ise.fraunhofer.de

Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

IEA INTERNATIONAL ENERGY AGENCY

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

10--

International Energy Agency PVPS Task 13: Performance, Operation and Reliability of Photovoltaic Systems

- IEA-PVPS is a global network of 32 members: 27 countries, European Commission, SolarPower, SEPA, SEIA, and Copper Alliance
- PVPS currently has seven active tasks related to photovoltaics
- Information as reports are available at http://www.iea-pvps.org
- Task 13 is comprised of 20+ countries, 36+ institutions → 45 participants and 60+ members
 - Subtask 1: New Module Concepts and System Designs
 - Subtask 2: Performance and Photovoltaic Systems
 - Subtask 3: Monitoring Operation and Maintenance
 - Subtask 4: Dissemination
- Le Task 13 is in its 3rd period (Sept 2018 to Aug 2021)

Activity 1.2: Bifacial Photovoltaic Module and Concepts

Motivation

- Bifacial will be is a major new PV technology being installed around the world.
- Yield prediction tools are not standardized nor validated sufficiently.
- Greater certainty in bifacial performance is needed.

Task 13 Work Program

- A. Collect and examine bifacial field data and results from international studies
- B. Evaluate and summarize bifacial standards, guidelines, and models being used around the world.
- PVPS
- Current Contributions from 13+ countries:
- Netherlands, France, Austria, Belgium, Switzerland, Germany, Denmark, Finland, Sweden, Italy, South Africa, Chile, USA.

PVPS

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

神

A. Collect Field Data and Results

We have developed a simple data query form that allows those with bifacial data to contribute summary results anonymously.

No	Information	Value	Unit	Comment
1	System ID			For internal reference, no need to disclose site names or commercial project names
2	Task 13 contact			E-mail address of task 13 contact person for further clarifications
3	Site latitude		deg E/W	
4	Site longitude		deg N/S	
5	System size		kWp	
6	System type			Fixed tilt / fixed vertical / HSAT /
7	Site albedo		%	
8	Bifacial gain		%	

- We have initially collected data from 21 modules or systems from 7 partners
- We would like to get many more submissions.
- We plan on mining the literature as well.
- Please contact me and I will send you the form.

9	Time period	h	Instantaneously / one day / one year /
10	Mounting height	m	Lower module edge above ground
11	Tilt angle	deg	if applicable
12	Ground cover ratio	%	Ratio of module row width to row-to-row distance
13	Further data?		Mention availability of time series or other detailed measurements

Very Initial Results

- For a given system design bifacial gain will increase linearly with albedo.
- System design has a larger effect on bifacial gain than albedo alone.

- Dual axis trackers usually have lots of backside obstructions unless specially designed for bifacial.
- Vertical tilt has high bifacial gains (due in part to low front side output)

IEA INTERNATIONAL ENERGY AGENCY

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Very Initial Results • Dual axis trackers usually have lots of backside obstructions unless specially designed for bifacial. Vertical tilt has high bifacial gains (due in part to 140 low front side output) . 120 140 100 Bifacial Gain [%] W-facing 80 We need a lot more data to 60 make sense of performance patterns 40 20 Bifacial 60 0 10 20 30 40 50 60 70 Albedo [%] 40 S-facing • For a given system design bifacial gain will

20

0

10

20

30

40

Tilt angle [deg]

60

70

80

90

50

Dual axis tracker

- increase linearly with albedo.
- System design has a larger effect on bifacial gain than albedo alone.

B. Evaluate and Compare Models

- Collect technical descriptions of bifacial performance models
 - These will be included in the final report
- Define a set of bifacial system designs to run in each model (include both real and theoretical systems)
- Models would be run by model developers and results sent to subtask 1.2 leads and or a T13 representative from your country.
- Compare results between models and to measured data

Interested parties include: Sandia, NREL, ENGIE, SUPSI,
ISE, EDF, ECN, and others.

Please let us know if you want to participate!

B. Evaluate and Compare Models

Part 1: Comparing modeling results to field measurements

- Front and backside irradiance
- DC Current, Voltage and Power
- AC Power
- Challenge: Most high quality field data is from small research systems

Part 2: Modeling Bifacial Output from theoretical systems

- Test of model's capability and flexibility
- Comparison of parameter sensitivity
- Challenge: Many models are limited in the types of systems they can simulate (e.g, 2-D vs. 3D models)

If you are interested in participating in this model comparison, please let me know (jsstein@sandia.gov) and I can include you in the distribution of the model run specifications.

Modeling should be ready to commence in January 2020

Example of Measured System Field Data

Prism Solar in Albuquerque, NM

- ~3 years of data
- **Five orientations**
- Two albedo values
- **Bifacial and Monofacial modules**
- Module level DC monitoring
- Front and Backside irradiance
- Module temperatures

NPP

Issues: System is very small and irregular design may not work in many models designed for large uniform systems.

Labol		Orientation	Ground
Laber	Tilt	Azimuth	Surface
S15Wht	15°	180° (South)	White gravel
W15Wht	15°	270° (West)	White gravel
S30Nat	30°	180° (South)	Natural
S90	90°	180° (South)	Natural
W90	90°	270° (West)	Natural

Ň

period

-vear

Example of Measured System Field Data

Single Axis Trackers at NREL

- <1 year of data
- Five bifacial technologies
- Bifacial and Monofacial modules
- String level DC monitoring
- Front and Backside irradiance
- Module temperatures

Issues: System is new and not all data can be shared.

Example Bifacial Sensitivity Study for SAT

Model: Bifacial_Radiance (NREL:

https://github.com/NREL/bifacial_radiance)

Run on a HPC Cluster

System: Single axis tracker

Variables: see table

Weather: 1 year TMY from Albuquerque, NM

- 365 days (8760 hours)
- 36 days: (3 days sampled from each month)
 - min, median, max daily insolation

Realizations: 100 samples

Parameter sampling: Latin Hypercube Sampling (DAKOTA)

- Random sampling from uniform probability bins
- Samples reordered to minimize cross correlation.

Parameter significance measured using Stepwise Regression

Inputs	Description	Туре	Range	Units
GCR	Collector width/row-to-row distance	Float	.38	meters/meters
Albedo	Ratio of light reflected by ground	Float	1. [.1080] 2-3. [.1525] 4. [.7585]	None
Hub height	Height of tracker from ground	Float	1-2	meters
Tube gap	distance of module from torque tube in Z	Float	1-10	centimeters
Backtrack	True= backtracking False="true" tracking	Boolean	True, False	none
Tube shape	Shape of torque tube	String	Round, Oct, Square, Hex	none

Other Assumptions:

- 5 rows
- 25 modules per row (center module from middle and edge row examined)
- 1UP portrait on tracker
- 60 cell modules (irradiance tracked on each cell)

PVP

Example Bifacial Sensitivity Study for SAT

- Scatterplots show front and back insolation for each run
- Edge module gets more front insolation when true tracking due to absence of neighboring row.
- Fine differences are hidden in scatter plots due to the variability in all of the inputs.
- Stepwise regression is a good way to sequentially remove the most significant effects and then evaluate the left over variance.

Example Bifacial Sensitivity Study for SAT

Percent of Variance

Explained

1

0.8

0.6

0.4

0.2 n

ØCT

Stepwise Regression sequentially

calculates the amount of the variance in the results that is due to each sampled variable.

- The albedo range changes the model sensitivity.
 - For lower albedo conditions variations in GCR and Albedo explain most of the variance
 - For higher albedo conditions (e.g., snow) variations in GCR and Hub Height are most important
 - Parameters such as torque tube shape, torque tube gap, or backtracking do not significantly affect total irradiance on the module.

Albedo: 0 75 – 0 85 Runs

Summary

₹ A

- IEA PVPS Task 13 is looking for contributors for a study and report on bifacial PV Performance and Modeling.
- Contributions can include:
 - Summary bifacial performance data (anonymous in report)
 - Time series of performance and weather for model validation
 - Model descriptions
 - Participate by running a set of common simulations
- Contributions can be anonymous or given credit in the report.

Please contact Joshua Stein (jsstein@sandia.gov)

or Christian Reise (Christian.Reise@ise.fraunhofer.de) with contributions are ideas

Thank you!

