LONG Solar

Realize Full Potential of Bifacial PERC Technology

Hongbin Fang
Director of Product and Technology
Amsterdam, Netherlands
September 16, 2019

Bifacial PERC at LONGi

Bifacial PERC: another way to improve efficiency

Improve Cell Efficiency

Control Power Degradation

3rd party LeTID testing results at 75C

- LeTID is generally believed to be related to metal impurity and H defect in the wafer substrate
- LONGi Solar, as integrated ingot/wafer/cell/module manufacturer, has tackled this issue from multiple directions: improve wafer quality and optimize cell processes

Hi-MO4: Bifacial Module with Power up to 440W

Cell w/ M6 wafer (166mm)

- ✓ Upgraded Bifacial PERC technology
- ✓ Efficiency up to 22.5%
- √ 6 busbars
- ✓ Better light reception

Module

Front power up to 440W

Mono/Bifacial PERC Efficiency Record

Cell Efficiency 24.06%

72-Cell Module Power 450.4W

Module Efficiency 20.83%

Optimize Bifacial Module Design

- Bifacial modules with frame can reduce module breakage rate during transportation and installation
- Bifacial modules with frame can save labor cost and are compatible with tracker system

LONGi Manufacturing Capacity (GW)

Bifacial Technology is not only about Module

System integration plays a key role in improving bifacial gain

Backside Energy Yield: Albedo

Bifacial gain improves with increasing ground Albedo

Dry Sand Albedo: 0.2-0.35

Grassland Albedo: 0.26

Cement Albedo: 0.25-0.35

New Snow Albedo: 0.82

Red Tiles Albedo: 0.33

Dry asphalt Albedo: 0.09-0.15

Backside Energy Yield: Albedo and Height

- Bifacial module backside energy yield improves with increasing Albedo (background reflectivity).
 Selecting site with more reflective background can improve overall system energy yield
- Increasing module height improves backside energy yield, as well as backside irradiance uniformity
- Module height (clearance from ground) of 1m and above is recommended

Bifacial System Design: Shading Impact

Simulation Result of Optical Loss with Rack Clearance and Thickness

Field Test Result and Simulation Result Comparison

- Based on the simulation result, increasing the rack clearance or decreasing the rack thickness can reduce optical loss
- Field measurement matches simulation result well
- If backside rack shading is unavoidable, setting the rack clearance larger than 40mm is highly recommended

Bifacial PERC Module Field Monitoring Data

Taizhou test site (N32.5°/E119.9°)

Energy yield gain at 1m racking height: TPO (12.34%) > Concrete (9.82%) > Grass (6.84%) Energy yield gain (TPO floor): 2m (22.97%) > 1.5m (18.94%) > 1m (12.34%)

Bifacial PERC Module Field Monitoring Data

Site	Fremont, CA
Sample Size	5 Mono + 5 BiFi
Mounting Type	Fixed Tilt
Surface Type	White: Albedo 60.5% Asphalt: Albedo 22.9% Dark: Albedo 7.6%
Data Resolution	Module-level (via DC Optimizer)

- 5 modules **fixed tilt** system established and monitored by **3rd party lab RETC/B&V** in California (N37.5, W122.0)
- Bifacial gain correlates to surface Albedo:
 - White/Asphalt/Dark rooftop, Albedo 60.5%/22.9%/7.6%
 - White/Asphalt/Dark rooftop, bifacial gain15.4%/10.8%/4.2%

Bifacial PERC Module

Site	Pahrump, NV
Sample Size	8 Mono + 8 BiFi
Mounting Type	Fixed Tilt, 1m clearance
Surface Type	White Gravel (Albedo 34.5%)
Data Resolution	String-level via Inverter

- 8 module **fixed tilt** system established and monitored by **3rd party lab RETC/B&V** in Nevada (N36.2, W116.0)
- Bifacial gain of 9.8% has been demonstrated with 6 months data acquisition

Bifacial PERC Module

Field Monitoring Data

Site	Livermore, CA
Sample Size	6 Mono + 6 BiFi
Mounting Type	Single-Axis Tracker
Surface Type	Gravel
Data Resolution	Module-level (via DC Optimizer)

- 6 modules on **SAT** system established and monitored by **3rd party lab RETC/B&V** in California (N37.7, W121.7)
- Bifacial gain of 8.0% has been demonstrated with 3 months data acquisition

LONGI Solar

Bifacial PERC Module

- Bifacial PERC project (336kw on single axis tracker) in Kubuchi, Inner Mongolia (N45.36°/E118.36°), China
- 18-month energy yield by Bifacial module + tracker is 26.6% higher than Multi module/fixed tilt and 16.2% higher than Multi/tracker

Summary

- Bifacial technology has been widely deployed globally
 - Bifacial PERC technology effectively achieved advanced n-type efficiency at p-type cost, offering competitive system economics
 - Significant backside energy yield has been demonstrated through field data collection
- To realize full potential of bifacial PERC technology
 - Cell efficiency and module power output will continue to improve
 - Module reliability and power degradation need to be controlled well
 - Continuous capacity expansion will ensure sufficient bifacial module supply
 - System integration plays a key role in improving bifacial gain

Bifacial PERC: Best Solution to Lower LCOE