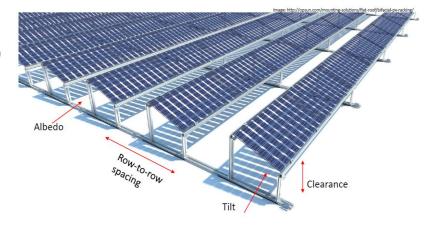


AMSTERDAM WORKSHOP

Bankability improvement for bifacial technology

The other side of the coin

17 Sept 2019


Introduction

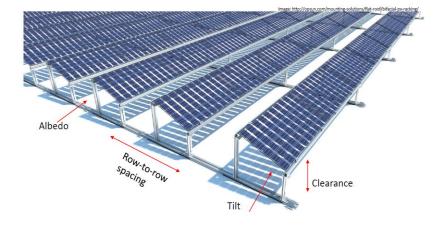
- For Lenders, bifacial technology is considered as a "new technology"
- Lender's points of attention regarding bankability study to grant the "non recourse loans" are:
 - The resource
 - The specific technological risks
 - The supplier's track record
 - Specific O&M risks
 - Additional risks

Design variables (1/3)

Front- and rear-side performance to be optimized to maximize bifacial gain without an offsetting reduction in front-side performance

- Albedo: bright is better (but rare)
- Ground clearance: 0.5 m (NREL recommendation)
- Front aperture ratio:
 - Ratio of front height over collector width
 - Ratios of 0.5 or more are recommended
- Tilt angle:
 - Higher than what might be optimal for monofacial
 - Unless tropical latitude

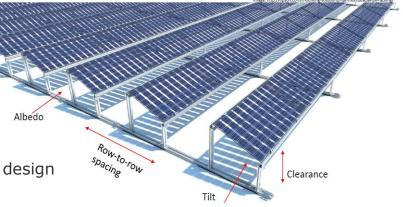
Design variables (2/3)


Front- and rear-side performance to be optimized to maximize bifacial gain without an offsetting reduction in front-side performance

Structure:

- Minimize shading interference (but expensive)
- Special racking and cable guidance

Row E-W configuration:


- Short rows increase bifacial value
- But are impractical for utility-scale systems
- Ground cover ratio, GCR :
 - Low GCR is key to high bifacial boosts
 - Must be balanced by practical limits on area and wire/trenching cost

Design variables (3/3)

Front- and rear-side performance to be optimized to maximize bifacial gain without an offsetting reduction in front-side performance

- Height: higher is better (but expensive)
- Spacing: wider is better (but unpopular)
- Wiring and connection/routing geometry:
 - E-W wiring rather than N-S serpentine wiring
- DC/AC ratio:
 - Less than 1.15 may be optimal depending on the site and design
 - Clipping
- Combiner, fusing, and conductor upsizing thresholds:
 - Step-change increases in the ratings and costs of these BOS items

Main Challenges / Risks – PERC / Bifacial						
 Manufacturing Additional steps New Materials Quality Assurance System 		 Design Site Selection Measurements Supporting Structure Lower GCR Backside shading Overtightening bolts. Frameless 	 Testing Not fully developed IEC 60904-1-2 Warranties 	 Modelling Lack of validation Stability and actual value of Bifaciality factor Albedos Variability Tracking System 	 O&M Limited field experience Higher OPEX Clipping, actual vs predicted 	
7 DNV GL © 2018					DNV·GL	

Testing & Certification

- Specific adaptation of existing standards needed : higher currents
 - because of the power contribution from the rear side requires
- Standard for bifaciality factor: IEC TS 60904-1-2.
 - Important also for labelling. To be issued by the beginning of 2019
- **Re-testing guidelines** for differences in BOM for bifacial modules
 - not available yet for bifacial modules
- Quality and reliability testing

300 W Short-circuit 8.6 A	ower point (Pmax) current (Isc) voltage (Voc)	
Bifaciality (φ 92%) Pmax_{BiFi100} 328 W	Pmax _{BiFi200} 356W
	ECE LUIS Errores The second	The index (Figure 3) when which is the shift of the Anti- vegate of accounts, interview of extent Men- tre states of accounts, interview index Anti- precedent-resources and provide account of account interview of accounts and provide account of account action accounts and provide account of account action accounts and provide account of account accounts and accounts and provides.

Bankability and modeling

- The **bankability** of a project **depends on the confidence** of the energy output predictions which are generally modeled
- Validation of bifacial energy modeling has not been generally accepted in the industry yet
- IE community is actively seeking sufficient field validation data to support bankable energy forecasts

Main Migation Measures / Intiatives

• Outdoor bifacial comparative Energy yield. Davis, California

 Lower the uncertainties based on modiifed softwares (DNV GL SolarFarmer) will be developed with a bifacial option calculation

- Test different BOMs to **improve the module reliability** in different site conditions
 - Increase the accelerated life time test sequence for some specific ítems (See DNV GL PQP program)
 - Update the IEC/UL reliability test conditions for bifacial modules accordingly

Main Mitigation Measures / Initiatives

- Mixing technologies Mono/bi
- Reducing leverage of debt
- Increased warranty levels
- Manufacturer Bankability reports
- Collaboration with manufacturers
- The importance of BOM
- Maintenance Reserve Account
- Presentations to Banks

U.S. Department of Energy awards study of bifacial PV technology, which could prove a 10% increase in energy output

Research study by DNV GL will be the most comprehensive energy yield analysis for bifacial PV modules to date

Conclusions

- Bifacial Technology is a really promising technology
- DNV GL notes that gains of even 5% may require significant attention to design and siting detail
- However, standards and technology are subject to future improvements for a better bankability

Questions

Private and confidential

Thank you.

DNV GL Solar stephane.lebeau@dnvgl.com +33 609 161 821

www.dnvgl.com

SAFER, SMARTER, GREENER