

BIFOROT –

Experimental data for LCOE appraisal of bifacial systems

BIFOROT: Bifacial Outdoor Rotor Tester

M. Klenk, T. Baumann, H. Nussbaumer, M. Morf, N. Keller, F. Baumgartner

Konstanz, bifi PV 2017

Zürcher Fachhochschule

BIFOROT set-up

- Array instead of single stand-alone module
- Real world conditions as in actual bifacial PV system
- Continuously varying tilt angle (automated, 1-minute cycle 0°-90°, 12 steps)
- Variable parameters (albedo, height, distance, width manually)
- Focus on central module(s) => Expansion of 3x3 to 3x4 array

BIFOROT - LCOE appraisal

- LCOE of bifacial systems (...yield, kWh/kWp...)
 - Crucial, but prediction not feasible with sufficient accuracy today
 Need for reliable yield prediction
- \Rightarrow Systematic compilation of data
 - Generation of data at system level (demo, comparison)
 - Reveal optimized installation conditions
 - Verify simulation tools and improve calculations
- Analyze specific properties of bifacial modules / systems
 - Angular sensitivity, intensity distribution at rear, ...

BIFOROT - LCOE appraisal

- LCOE of bifacial systems (...yield, kWh/kWp...)
 - Crucial, but prediction not feasible with sufficient accuracy today

 \Rightarrow Need for reliable yield prediction

- \Rightarrow Systematic compilation of data
 - Generation of data at system level (demo, comparison)
 - Reveal optimized installation conditions
 - Verify simulation tools and improve calculations
- Analyze specific properties of bifacial modules / systems
 - Angular sensitivity, intensity distribution at rear, ...

BIFOROT- Annual yield for varied tilt

Annual yield of the center module

 \Rightarrow Prediction of PV system output for similar systems

⇒ Optimized installation
 conditions for given, specific
 installation situation

School of

Engineering

and Fluid Engineering

IEFE Institute of Energy Systems

Tilt [°]	0	10	15	18	21	25	30	35	40	45	60	90
Yield [kWh]	323.8	340.3	345.6	348.0	349.6	350.6	350.0	347.9	344.6	340.4	325.6	268.3

Measurement period 1 year: 1st of Oct. 2016 to 30th of Sept. 2017

BIFOROT- Annual yield for varied tilt

Max.: 1292 kWh/kWp @ 25° tilt angle

(Here: net data without correction for downtime)
⇒ underestimation of actual kWh/kWp value
Unfavorable shading situation since 27th of March (see next slide)

Specifications

- Azimuth angle:
- Axis height:
- Module height:
- Axial spacing:
- Ground albedo:
- Location:
- Module (STC):
- Module type:

- 0° (south orientation)
- 0.75 m (axis center)
- Axis height \Rightarrow "lower edge" dependent on tilt angle!
- 2.86 m (axis center to axis center)
- 0.51 (measured at axis height on "dirty" foil)
- Winterthur, Switzerland
- Pmpp front: 271.4 W; Pmpp rear: 188.5 W; B: 0694 (J-Box)
- Megacell MBF-GG60-270

of Applied Science

Challenges

Applied Sciences

School of
Engineering
IEFE Institute of Energy Systems
and Fluid Engineering

90 Downtime: white spaces in sun-path diagram Measured data with AOI — December 21 — June 21 70 80 Site specific limitation / shading 60 70 sun elevation $\gamma \begin{bmatrix} \circ \\ 0 \end{bmatrix}$ \Rightarrow azimuth angle range: 93.4° to 265.1° 20 20 10 10 50 100 150 200 250 300 Sun azimut α [°] Since 27th of March 2017 Building crane in front of BIFOROT Winter (Oct. – March) unaffected

T. Baumann et al., Proceeding of the 33rd EUPVSEC 2017

Zürcher Fachhochschule

BIFOROT - LCOE appraisal

- LCOE of bifacial systems (...yield, kWh/kWp...)
 - Crucial, but prediction not feasible with sufficient accuracy today
 Need for reliable yield prediction
- \Rightarrow Systematic compilation of data
 - Generation of data at system level (demo, comparison)
 - Reveal optimized installation conditions
 - Verify simulation tools and improve calculations
- Analyze specific properties of bifacial modules / systems
 - Angular sensitivity, intensity distribution at rear, …

BIFOROT - LCOE appraisal

- Data collection and testing of algorithms
- Project with ISC Constance / Djaber Berian just started

- Verify simulation tools and improve calculations
- Analyze specific properties of bifacial modules / systems
 - Angular sensitivity, intensity distribution at rear, ...

Some examples for more general analysis at the next slides

Rear and front contribution

- Module 3 (M3): Rearside covered for I_{SC,front} measurement
 - Module 2 (M2): IV-curve measurement (_{ISC,bifacial})
- Module 1 (M1):
- Frontside covered for $I_{SC,back}$ measurement

- Bifacial gain & rear side power contribution directly if P_{mpp} measurement for M1, M3 realized
- Analysis of Irradiance/ I_{sc}

Rear and front contribution

- M3: I_{sc} front; M2: I_{sc} bifacial; M1: I_{sc} back
- October March (winter season)
- Bc: Backside contribution
- Bc relative to front: 0.15 (45°) to 0.35 (0°)

- ΣI_{sc} in kAh
- Σ front + back
 good but not perfect
 correspondence to
 bifacial
- ∑l_{sc} back (absolute) surprisingly constant

T. Baumann et al., Proceeding of the 33rd EUPVSEC 2017

Illumination intensity and homogeneity

- Small irradiance sensors crystalline silicon cells
- Sensors enable mapping of illumination intensity at front and rear side

Zürcher Fachhochschule

T. Baumann et al., Proceeding of the 33rd EUPVSEC 2017

Illumination intensity and homogeneity

- Compare M1–M3 results to small sensors
- October March (winter season)

Zürcher Fachhochschule

- Local output (rear) normalized to ISE (front)
- Compare to M1–M3 results (backside contr.)

- Lowest rear side illumination intensity determines backside contribution
- See also talk of Mr. Eisenberg/ Solaround yesterday

Zurich University of Applied Sciences

and Fluid Engineering

Illumination intensity and homogeneity

95.0%

41.1%

Sensors at short side

- Normalized to ISE reference cell turning with module front
- Short-term data for test of simulation
- Here: Integrated data from Oct 2016 to March 2017

Zürcher Fachhochschule

103.6%

33.8%

of Applied Science

28.5%

15°

IEFE Institute of Energy Systems and Fluid Engineering

26.8%

100.9%

29.2%

18°

97 7%

31.9%

100.3%

T

36.4%

31.8%

10°

37.0%

Zurich University of Applied Sciences

Miniaturized test rig

Zürcher Fachhochschule

Miniaturized test rig / basic idea

BIFOROT: Long term measurements

- Reveal yield; Compile data for simulation
- Manual adjustment (height, dist., albedo) slow

- Param. varied quickly \rightarrow nearly identical conditions
- Multiple cheap rigs \rightarrow vary at identical conditions !!!
- Multiple cheap rigs \rightarrow directly compare locations !!!

Miniaturized Test Rig / Correspondence

Miniaturized Test Rig / Correspondence

Miniaturized Test Rig / Correspondence

Correlation of small and large rig

School of Engineering IEFE Institute of Energy Systems and Fluid Engineering

of Applied Sciences

Correlation of small and large rig

School of Engineering IEFE Institute of Energy Systems and Fluid Engineering

of Applied Sciences

Planned: Mobile test platform

School of Engineering IEFE Institute of Energy Systems and Fluid Engineering

Miniaturized rig - more flexible solution

Parameters varied quickly \rightarrow nearly identical conditions

- Multiple cheap rigs \rightarrow vary at identical conditions !!!
- Multiple cheap rigs \rightarrow directly compare locations !!!

Product for EPC`s, Institutes,...?!

Current plan: Improved version with two systems as mobile test platform

Summary and Outlook

BIFOROT

- + Suitable tool to analyze bifacial installations
- + For investors \rightarrow test / demo system; Reveal optimized installation conditions
- + Data generation to verify simulation algorithms
- + Systematic analysis of general properties (e.g. intensity distribution at rear)
- Suboptimal location at ZHAW roof
- Long-term measurement

Miniaturized test rig

- + Data shows good correspondence to BIFOROT results
- + More flexible than large array
- + Parallel use of devices will reveal effects by direct comparison!