

Bifiacial Workshop, Konstanz, 2017

Multicrystalline PERCT Solar Cells and Modules

W. Jooss, A. Teppe, O. Voigt, I. Melnyk, F. Binaie, P. Fath

RCT Solutions GmbH, Germany

Different wafer types

Motivation

World market share [%] 100% n-type-Si 90% 80% p-type mono-Si 70% 60% 50% p-**ty**pe multi-Si 40% 30% 2017 20% RPV 10% 0% 2016 2017 2019 2021 2024 2027 p-type HPmc p-type monolike p-type mc p-type mono n-type mono

- p-type multi-Si will dominating in future
- p-type wafers and corresponding processes are well established => base for evolutionary solar cell development
- Need for advanced solar cell processes for high efficiency multi-Si solar cells

 New texturing technology for DWS multicrystalline wafer is required, since acidic isotexturing is not as effective due to different (sub-) surface morphology

Outline

- Multi-Si PERCT Solar Cell Structure
- Production Process Flow
- Pilot Production Results
- Loss Analysis
- MCCE for DWS multi-Si wafer

Cost-of-Ownership Analysis of Different Technologies

RCT covers the full range of Photovoltaics: from production technology and equipment to PV systems and energy storage

- Established in 2012
- >3 GW RCT black Si wet chemical equipment sold until now
- Setting up of first solar cell factory in Turkey with RCT bifacial multi Si technology
- Technology partner for largest 1GW solar factory in India applying RCT mono PERC technology

- Market launch of highly efficient integrated solar battery inverter
- Novel battery storage tool for up to 9kWh with modular concept developed
- Pilot production in Konstanz, Germany

mc-Si PERCT Solar Cell

Solar Cell Process Flow and Production Equipment

Additional standard equipment for bifacial production

- Rear side PECVD SiN_x
- Wet bench
- BBr₃ diffusion

Additional equipment for AI rear finger

Rear side laser

All equipment and technologies proven in PV industry

Results on Bifacial PERCT: Solar Cells and Modules in Industrial Pilot Line

- Average solar cell efficiency
 - Front side: 18.7%
 - Rear side: 16.1%
- Top efficiency: 19.1%
- Bifaciality: 86%

Module ID	average cell Eff.	back sheet	CTM loss	Module power front (1sun) [W]	Module power rear (1 sun) [W]	technical power 1.0 sun front + 0.2 sun rear [W]
P6016SY087	18.47		2.4%	265.8	167.5	299
P6016SY088	18.47	transparent	2.0%	266.9	165.6	300
P6016SY089	18.57		2.5%	267.0	163.4	300
60 cell	18.5	transparent	2.3%	266.6	165.5	300

Bifacial Module Energy Harvest

Estimation of bifacial gain $32.1\% G_{rear} * 80\%$ bifaciality = 25.7%

Experimental data: +23.0%...25.5%

 V_{oc} and I_{sc} nearly unchanged after 4 months of outdoor exposure

Loss Analysis of typical mc-PERCT solar cell

• Quantum Efficiencies of a solar cell with $J_{sc} = 37.3 \text{ mA/cm}^2$

J_{sc} is limited by high primary surface reflectivity (improve texturing), bulk (better material) and emitter recombination (better emitter: reduce N_{peak} + passivation)

Enabling DWS Multi Texturing and Efficieny Inrease: Black Silicon by Metal Catalyst Chemical Etching

 Based on RCT inline family (i-Tex, i-Side, i-Clean) with proven design and components

< 12m length (excl. automation)

- AgNO₃ cost are much lower than additive cost in batch type processes
- AgNO₃ cost only 10% of total cost, < 0.5mg / wafer, even without recycling
- Inline uses chemicals more efficient than batch due to longer bath lifetime

CoO Comparison of Different Technologies Key Assumptions

	p-type mc Al- BSF	p-type mc PERC	p-type mc PERCT bifacial	p-type CZ PERC	p-type CZ PERC bifacial	n-type PERT bifacial
Cell efficiency	18.8%	19.5%	19.5%	21.2%	21.2%	21.2%
Cell power [W]	4.62	4.79	4.79	5.5	5.15	5.15
Module power[W]	276	286	280	303	297	297
Bifaciality	0%	0%	75%	0%	75%	90%
Technical Power at G _{rear} =25%	276	286	332	303	353	364
Wafer price [USDct]	60	60	60	75	75	80
Module costs [USD]	47	47	51	47	51	51

Cell Production Costs

Note: mc-PERCT is based on Al-finger on rear

Bifacial gain is considered in production costs

- Bifacial multicrystalline silicon PERCT solar cells are an attractive alternative to their monocrystalline counterparts
- Solar cells and modules have been processed in an industrial pilot line
 - Average front side efficiency of 18.7%, top efficiency of 19.1%
 - Bifaciality >85%
 - Outdoor tests confirm bifacial gain as expected
- MCCE texturing enables the use of DWS multi wafer and reduces reflectivity
- CoO analysis further demonstrates the benefits of bifacial applications. Mc-Si PERCT leads to slightly lower CoO than mono bifacial concepts.

Thank you for your attention!

RCT Solutions GmbH

Line-Eid-Strasse 1 78467 Konstanz GERMANY

Confidential