Bifacial gain simulations of modules and systems under desert conditions

bifi PV Workshop 2017 25 – 26 October 2017, Germany, Konstanz

David DASSLER^{1,2}, Stephanie Malik¹, Benjamin W. Figgis³, Prof. Joerg Bagdahn², Dr. Matthias Ebert¹

¹ Fraunhofer Center for Silicon Photovoltaics (CSP), Halle, Germany ² Anhalt University of Applied Sciences, Koethen, Germany

³ Qatar Environment & Energy Research Institute, Doha, Qatar

معهد قطر لبحوث البيئة والطاقة Qatar Environment & Energy Research Institute

عضو في مؤسسة قطر Member of Qatar Foundation

Application of bifacial modules in desert conditions

- However, high continuous dust deposition (soiling) makes yield estimation difficult
- Investigation of module performance and their benefit in desert environment are required

Desert climates makes bifacial modules more interesting

- Significantly higher irradiance dose than in moderate climate
- Bright ground with albedo up to 40%
 (→ E-W vertical)
- More diffuse light due to dust in the atmosphere

Dusted solar modules in desert (© PI Berlin)

Approach of outdoor investigation and bifacial gain simulation

(1) Outdoor measurements in Qatar

- Single and system measurements since 09/2016 in Doha, Qatar
 - Bifacial modules with 270 Wp, installed 2016
 - Reference: monofacial module 220 Wp, installed 2012
- Module data: IV-curve, module temperature
- Environmental data: irradiance, amb. temp., rel. humidity, wind
- Outdoor measurements provided by Qatar Environment & Energy Research Institute

Installation of bifacial module (front and rear side) at Solar Test Facility at Doha

(2) Cleaning from disturbing influences

(1)

- To get a reliable data-set:
 Plausibility: data within physical correct limits and only day-values
 - Excluding outliers: (2) data within 3-sigma intervall¹ of quotient I_{SC}/G and P_{MPP}/G, Fig. (1)
 - Simultaneous cleaning state: by linear regression of I_{sc,bi} vs. I_{sc,mono} daily slopes within statistical range, Fig. (2)

Hochschule Anhalt

Anhalt University of Applied Sciences

¹ Zhu: Outlier identification in outdoor measurement data –effects of different strategies on the performance descriptors of photovoltaic modules", IEEE 2009

Anhalt University of Applied Sciences

(3) Energy yield evaluation

How is the impact of soiling on bifacial modules?

- Currently, no standard to determine the classical Performance Ratio for bifacial modules
- Introduction of "Yield Ratio": the slope of a linear regression between daily irradiance yield and corresponding module yield
- Yield Ratio increases by cleaning or decreases by dust deposition, but as well with rising temperature
- → Filtering for module temperature at 48 °C ± 5 %

Scheme of the determination of daily Yield Ratio

(3) Energy yield evaluation Yield Ratio

16 Uniform behaviour between bifacial and monofacial modules Daily Yield Ratio [%] 12 Temporary degradation of Yield Ratio due to soiling events 10 Jumps are as the scheduled cleaning events 8 Monofacial module ٠ 6 **Bifacial module** 12/2016 09/2016 03/2017 06/2017 09/2017 Time Daily Yield Ratio for bifacial and monofacial module over one year

8

(3) Energy yield evaluation Soiling rate

Determination of "Soiling rate" as linear slope over Yield Ratio, normalized to the cleaned state

	"Soiling rate"
Monofacial	0.57 %/day
Bifacial	0.61 %/day

- In this time period, a "soiling rate" around 0.6 %/day has occurred
- Independently of the installed module (
 no influence on rear side)

Normalized daily Yield Ratio for bifacial and monofacial module (1 month and 3 weeks)

(4) Bifacial gain simulation based on outdoor measurements and yield evaluation

Architecture of used ANN

(4) Bifacial gain simulation based on outdoor measurements and yield evaluation

- Training of network based on the information (every minute) of first quarter of data
- Validation of trained network for remaining shows less averaged errors

	RMSE ¹
Monofacial	0.30 %
Bifacial	0.48 %

Method of ANN is usable for both technologies

Subdivision of the data in training and validation

Summary and Outlook

- Application of bifacial modules in desert is still recommended.
- Bifacial gain simulation with a high resolution based on outdoor measurements
 - Promising strategy independently of the technology
 - For optimization of cleaning cycles
 - Further investigations to improve yield prediction
 - Applicable for module and system level
- Further investigations with comparison to vertical installations and of the reusability of trained data at other sites and climates

CSP

Contact:

Fraunhofer Center for Silicon Photovoltaics Otto-Eissfeldt-Strasse 12 06120 Halle (Saale), Germany

David DASSLER Tel. +49 345 5589 5214 David.Dassler@csp.fraunhofer.de www.csp.fraunhofer.de

Thank you for your attention!

