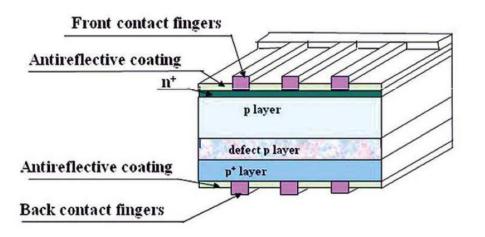
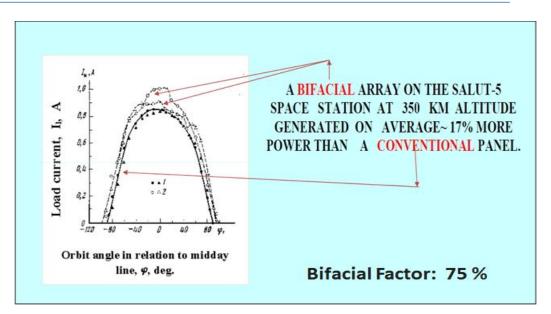
p-PERT Bifacial Solar Cell Technology Past and Future

Dr. Lev Kreinin Brof. Naftali Eisenberg

BIFI Workshop KONSTANZ October 2017

OUTLINE


- **1. Bifacial p-PERT industrial history in brief**
- 2. Bifacial p-PERT technology
- **3. Solaround achievements**
- 4. Conclusion


1. Bifacial p-PERT industrial history in brief

BIFACIAL p-(P)ERT for SPACE: Kvant, Russia

- p-Si : radiation resistance better than in n-Si
- Thermally doped emitter and implanted back p+ layer
- No front and back texturing
- No front and back passivation but ZnS ARC
- Ti-Pd-Ag evaporated contacts
- η (AMO) = 15-18 %

- Production p-type started in 1958
- Bifacial development started in 1964
- First bifacial satellite in 1974
- Less than 1MW/ year

FIRST SEMI-INDUSTRIAL BIFACIAL p-PERT: Solar Wind, Russia

- Production started in 1992 at Krasnodar
- Annual production 2MW/year
- 5" cells with Boron BSF prepared by spin-on boron glass prior to high temperature drive-in
- Bifaciality factor : 70 %
- Front efficiency: 16.5%

Test site: Berlin 2003 6kW on the roof of the ITC, OWZ 3kwp mono-facial and 3kWp bifacial Albedo: 025 Annual Gain : 8 %

FIRST INDUSTRIAL BIFACIAL p-PERT: bSolar, Israel/Germany

- Production started in 2010 at Heilbronn, converting a closed production line of PERT cell with Al-BSF into a PERT line with B-BSF
- Annual production 30MW/year
- 6" cells with Boron BSF prepared by spin-on boron glass prior to high temperature drive-in but cell process different from previous (S-W)
- Bifaciality factor > 78 %
- Front efficiency > 18.5%
- Stopped operating in 2012, together with most of German PV plants

Test site in Adlershof-Berlin 2011

- 27 bSolar panels + 9 reference ones
- bSolar vs. Solon modules
- Ground reflectance (Albedo): ~30%
- NS distance = **2.35m/3.5m**
- Height (panel lower edge): **0.5m**

RECENTLY PUBLISHED LIST OF BIFACIAL TECHNOLOGIES (2016)

Table 1

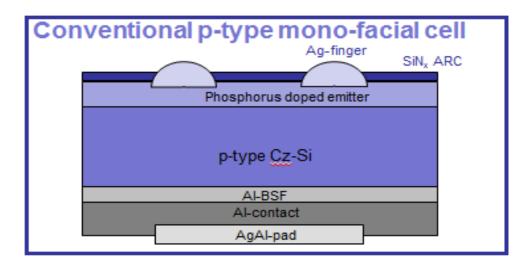
Selection of conversion efficiencies for different bifacial cell technologies.

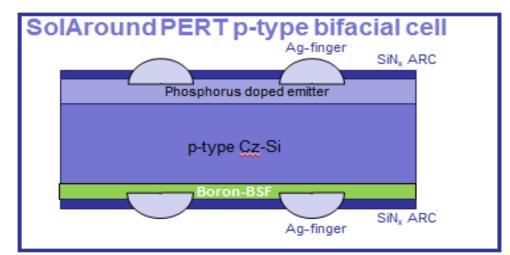
cription	Concentration (Eur)			
	Concentration (Sun)	Efficiency (front or front/rear)	Ref.	
ied ^a (independently confirmed)	1	21.9	[80]	Bifacial solar photovoltaics – A
i p-type triode structure (independently confirmed)	1	21.3/19.8	[81]	tochnology roviow
i (a-Si:H rear surface passivation) (independently confirmed)	1	20.1	[50]	technology review
i (independently confirmed)	1	19.4/16.5	[82]	by
i symmetrical (independently confirmed)	1	18.4/18.1	[82]	Ny I
IL (independently confirmed)	1	17.1	[83]	R. Guerrero-Lemus, R. Vega,
ible c-Si (thickness: 110 µm, AMO) ^a (independently confirmed)	1	14.7	[81]	
e (CuxTe back contact, 40-60% transmission) (independently confirmed)	1	13.9	[68]	Taehyeon Kim, Amy Kimm,
IJT cell on commercial CZ c-Si 6" wafer using busbar-less front side metallization	1	23.14	[42]	
s thin film (thickness: 5 μm)	1	22.6/12.9	[71]	L. E. Shephard
ra (n-type c-Si)	1	21.3	[84]	
RT	1	20.63	[85]	in
pe HIT screen printed	1	20.2	[86]	Renewable and Sustainable
er® solar cells	1	19.4	[22]	
note plasma CVD		> 18/ > 18	[87]	Energy Reviews 60
$)/(p^+nn^+)Cz-Si/(IFO)$ Cu contact $25 \times 25 \text{ mm}^2$	3	17.9/17.0	[38]	•
)/(p ⁺ nn ⁺)Cz-Si/(IFO) Cu contact 25x25 mm ²	1	17.6/16.7	[38]	(2016) 1533–1549
5i p-type SiNx PECVD and screen printed, industrial process	1	16.6/12.8	[5]	
m ^{+a}	7	16.5/13.6	[88]	
m ^{+a}		15.7/13.6	[88]	
s thin film (thickness: 1.5 μm, AM0)	1	15.4	[89]	400 papers screened on
5	1	15,2	[70]	
VER cell (16% transparency)	1	12.9	[90]	bifacial cells
e/CdS (ITO back contact)	1	10.3/2.1	[16]	One p DEDT only in the list
ible dye-sensitized (if 90° bending: -6%)	1	6.8	[65]	One p-PERT only in the list
-sensitized (Ti foil based flexible)	1	6.55/4.79	[66]	
-sensitized (polypyrrole counter electrode)	1	5.74/3.06	[67]	
a-thin CdTe (0.68 μm)	1	5.7/5.0	[69]	
d-state dye-sensitized solar cell (tandem – no color distortion)	1	3.3	[18]	SolAround
anic (50% transparency)	1	3.24	[91]	JUAIOUIIU
ulated n-type HIT		27.02	[21]	

* Not under standard test conditions.

NEW BIFACIAL p-PERT APPROACH: SOLAROUND, ISRAEL MOTIVATION

- > p-type mainstream monocrystalline silicon
- PERT structure with full Boron BSF and passivated back is intrinsically superior to local BSF or full passivated structures.
- > Highest front efficiency
- > Maximum bifaciality


SOLUTION: p-PERT CELL

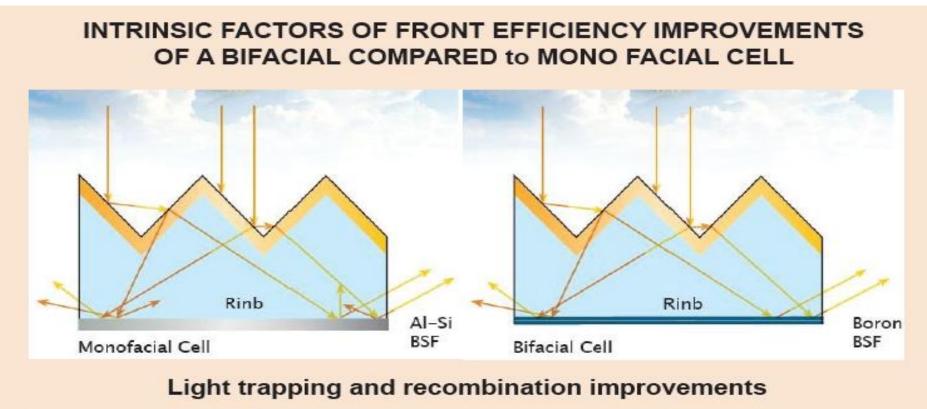

THE NOVELTY : New Boron Controlled Doping technology using surface deposited layer

SolAround's solution provides also Boron doping process without degradation of the bulk lifetime

2. Bifacial p-PERT technology

p-SI PERT CELL CONCEPTS

Aluminum BSF


- Opaque back side, prevents bifaciality
- Limits increase of front efficiency

Boron BSF

- Improved front efficiency due to superior BSF (higher B solubility)
- Improved optical properties
- Open back side, allows bifaciality
- Drawback: potential "lifetime killer"

COMPARISON OF AI-BSF VERSUS BORON-BSF

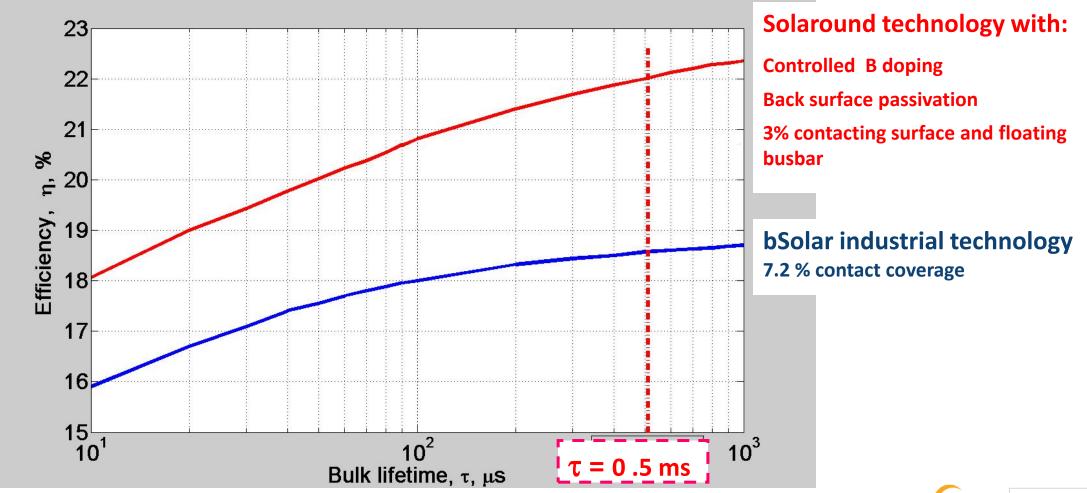
 $R_{in b} = 60 \%$ Al solubility in Si ~3.10¹⁸ cm-3 S_{eff} = 400 ÷ 1000 cm/s $R_{in b} = 76 \pm 5 \%$ B solubility in Si > 10²⁰ cm-3 S_{eff} < 10 cm/s

Electro-Physical Parameters:

- High bulk diffusion length L >> d (d: cell thickness ~200 microns)
- High potential of back high-low barrier (BSF)
- Low effective back surface recombination (S_{eff}), at least one order of magnitude less than in Al-BSF i.e. less than 10 cm/s.

Optical Parameters:

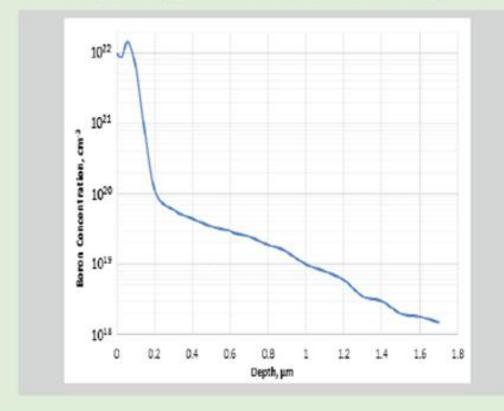
- Effective light trapping in photoactive wavelength region
- Light rejection in non-photoactive wavelength region



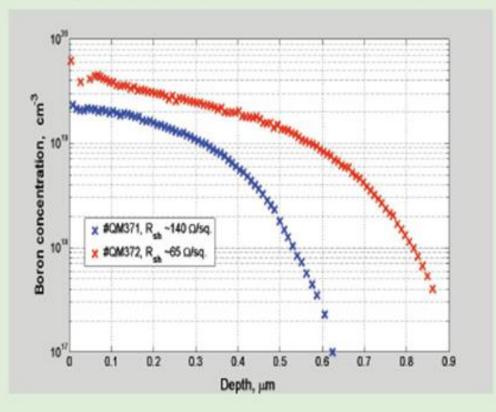
NECESSARY ACTIONS FOR ACHIEVING OBJECTIVES

- $\hfill Use starting Si with high lifetime <math display="inline">\tau$
- Proper p⁺ layer doping
- Proper pyramid textured on front
- No texturization on boron doped (back) side

EXPECTED FRONT EFFICIENCY FOR BIFACIAL CELL WITH B-BSF

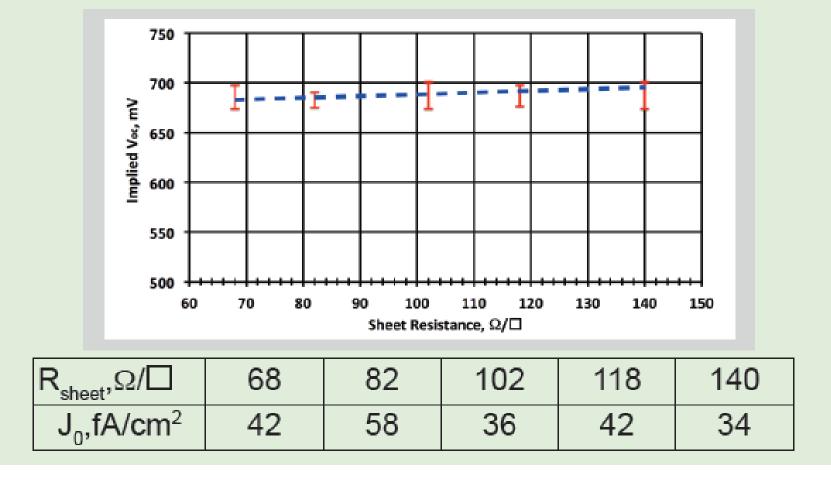


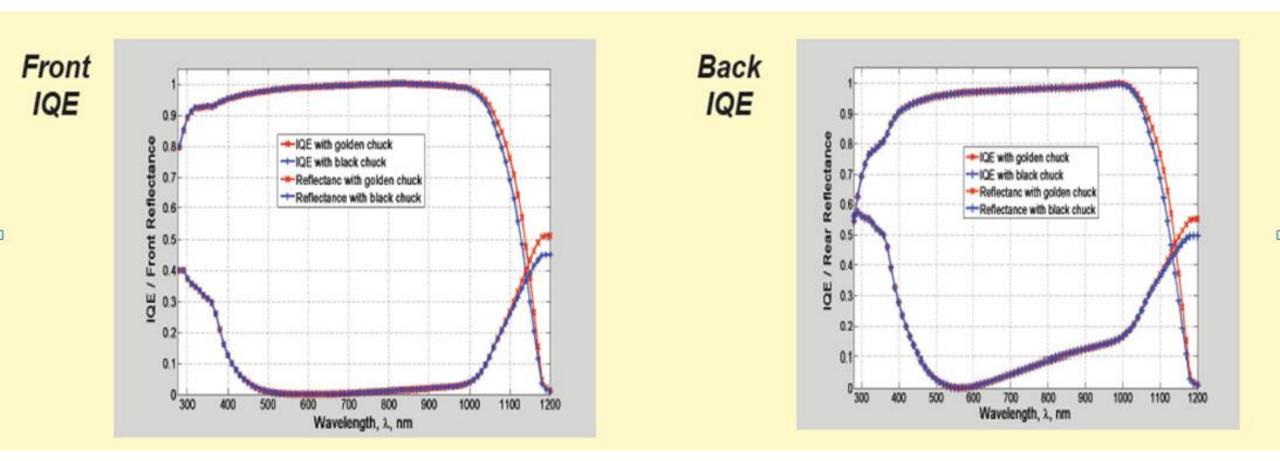
3. Solaround achievements



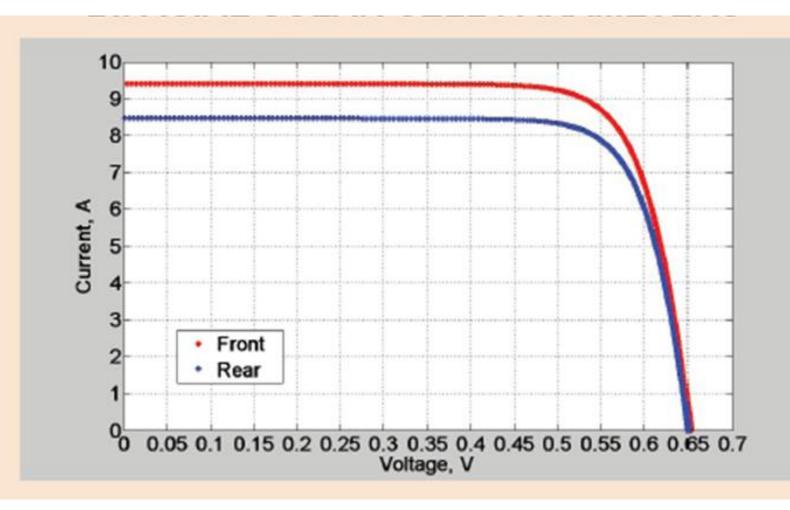
BORON DOPING OF p⁺ LAYER

Over doping (first generation solar cell)


Controllable doping (new generation solar cell)


PRELIMINARY RESULTS WITH NEW BORON BSF PROCESS

Implied open circuit voltage, iV_{oc}, (of n⁺-p-p⁺ structures vs. doping level of a p⁺ layer)



SOLAROUND CELL BIFACIALITY

SOLAROUND BIFACIAL CELL PARAMETERS

Parameter	Range	Expected	
l _{sc} , mA/cm²	39.2 – 39.5	>40	
V _{oc} , mV	650-658	>660	
FF, %	78-79	>80	
Eff (front), %	19.9 - 20.3	>21	
∣ _{sc b} ∣ _{sc f,} %	89-92	>92	

4. Conclusions

- h⁺-p-p⁺ with a uniformly B doped p⁺ layer is a promising structure for industrially produced PERT bifacial cells.
- B diffusion using preliminary deposited B containing solid layer allows controllable doping of p⁺ layer.
- Retained high bulk lifetime, low back S_{eff} and high quality emitter provide implied V_{oc} of the PERT structure exceeding 700mV enabling high front efficiency in the range 21-22 %.
- High bifaciality factor: Back to front short circuit current ratio is in the range 89-92%.
- High quality Cz starting p-Si can compete with n-Si as material for cell production with front efficiency above 22%.

Contact Us

Headquarters: Lev Academic Center, 21 Havaad Haleumi St., Jerusalem 9372115 Israel Avishai Drori, CEO avishai.drori@sol-around.com Mobile: +972 54 5900053

Prof. Naftali Eisenberg, CTO eisenberg@sol-around.com Mobile: +972 54 7343468