

Accurate inline characterization of BSF and emitter fabrication processes for high-volume bifacial cell production

Gordon Deans, Aurora Solar Technologies 4th Bifacial PV Workshop Konstanz, Germany 26 October 2017

Aurora Solar Technologies

- Mission Deliver superior results to the PV industry through measurement and control of critical processes
- Product line for measurement, visualization, and control of Si PV cell fabrication processes
 - DecimaTM inline sheet resistance measurement systems
 - p+, n+, n++/n, bifacial doped layers measured to 6 σ standards in real time
 - Discrete mapping of sheet resistance across wafer surfaces
 - Aurora VeritasTM production controller
 - Immediate "MRI"-like spatial view of process tool performance using Decima measurements
 - Networked to all Decimas for integrated measurement and control
- Proven with top-tier solar manufacturers and process equipment vendors worldwide

Aurora headquarters: Vancouver, Canada

Aurora Technology in c-Si Cell Production

Inline measurements provide vital information and insights

- Faster, more precise line commissioning
- Data to support continuous improvement of the line
- Data to support device design improvement
- Best possible quality control
- Evaluation and cost control of raw material supply

Increasingly important with higherefficiency cell designs

Example: inline bifacial cell measurement

Process tool behaviour is the key

- Behaviour as shown here is not uncommon ...
- ... hence sparsely sampled measurements hide useful information
- How can we reveal the true variations and their significance?

Two emitter sheet resistance profiles, showing significant non-uniformity along quartz tubes

Understanding process variation

- See what the process tools are doing
- Spatial variation
 - Intra-wafer
 - Tubes or lanes
 - Tool-by-tool
- Time variation (batch-to-batch)

Wafer edge-to-edge emitter sheet resistance measurements along furnace tube

Three successive batches from "horizontal" furnace tube. Colors indicate emitter sheet resistances for each wafer compared to the SPC targets

Measurement Technique

- Non-contact IR reflection and transmission sensing
- Mid-IR light is directed at the sample and the reflection and transmission are captured
- Magnitude of these signals is proportional to free carrier density
- Correlated to 4pp sheet resistance
- Benefits:
 - Can be spatially resolved
 - No junction required for doped layer sensing separation of BSF from wafer bulk
 - Insensitive to surface electrical properties
 - Tolerant to production facility "noise"

Reflection-only is shown for simplicity

Si wafer

Scientific basis

- IR reflection (λ > 1.1 μm) depends on free carrier concentration and mobility
 - At normal incidence the reflection from silicon in air is

$$R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2}$$

• This is related to the dielectric function by

$$\varepsilon(\omega) = (n - i\kappa) = \varepsilon_0 - \frac{\omega_p^2}{\omega(\omega + \iota\gamma)}$$

• Dielectric function depends on doping; therefore, variations in doping levels of the emitter lead to wavelength dependent variation in reflection from the surface, as shown below:

Figure 1 – Spectrally resolved IR reflection from four PV wafers with diffused emitters. Samples were measured on a Thermo-Nicolet 8700 FTIR. Figure reproduced from [3].

Fig. 4 Optical constants of *p*-type silicon for different doping concentrations calculated using the Drude model, including accurate values of carrier mobility and ionization: (*a*) refractive index, and (*b*) extinction coefficient. The legends are the same for both figures.

Applied to measuring doped layers in Si

- IR complex refractive index (n and κ) of IR varies by dopant concentration N and wavelength λ
- Therefore, use of certain mid-IR bands allow resolution of highlydoped layers near the top and bottom wafer surfaces
- Because polarity of the doped layers does not matter the BSF dopant concentration can be isolated in an n++/n or p++/p BSF/bulk structure

Getting from theory to practice

Challenge	Solution
Varying light <u>capture</u> due to surface roughness variations	Optical geometry to direct and consistently collect light
Varying light <u>trapping</u> due to surface roughness variations	Proprietary signal processing to separate surface reflection variation from free carrier reflection
Repeatability for spatial resolution across wafers	High-precision wafer edge and position tracking

Results

- nPERT
 - R² (front): 0.89
 - R² (rear): 0.96
 - Accuracy: σ < 1.5 ohms/sq
 - Repeatability: $\sigma = 0.7$ ohm/sq
- BiSoN
 - R² (front): 0.97
 - R² (rear): 0.91
 - Accuracy: σ < 2 ohms/sq
 - Repeatability: σ < 1 ohm/sq

Experience to date

- Taiwan
 - Four systems (three inline, one standalone) since 2015
 - Wafer and process mapping for mono-PERC production
 - Used in process tool profiling, ramp-up and for continuous quality control
- Korea
 - Fourteen systems for mono-PERC production since 2016.
 - Six dual-sensor systems for bifacial production since 2016
 - Used for continuous quality control and wafer accept/reject binning
- Europe
 - Dual-sensor qualification for BiSoN measurement 2017
 - <u>Sequential single-sensor qualification for nPERT wafers 2015</u>
 - One system with wafer and process mapping for implanted mono and multi production since 2015
 - Used for continuous quality control
- China
 - Standalone system integrated in wafer transfer station
 - Used for emitter metal paste optimization
- China (soon)
 - Four systems with wafer and process mapping and both single and dual sensors for bifacial production
 - To be used in ramp-up and continuous quality control

Thank you

Contact information

Gordon Deans, COO gdeans@aurorasolartech.com +1 778 908 4110

Backup slides

Aurora installations worldwide

Installed in PV cell production (customers)
Research (own/collaborative)

What happens when you control process variations and optimize set-points

- Variation in cell efficiency is reduced
- Manufacturing yield (in terms of MW) is increased
- Corollary: bin distribution narrowed
- To this day, continuous inline measurement is a key tool for yield management at qualityfocused manufacturers

Effect of quality and variance control program at top-tier manufacturer. Blue indicates production line where program implemented, orange is regular production.

Source: "Integrated Efficiency Engineering in Solar Cell Mass Production ", Ph.D. Thesis, Thomas Dinkel, Jacobs University School of Engineering and Science, May 2010

www.aurorasolartech.com