

Bifacial shed simulations with PVsyst

Bifacial Workshop 2017

25-26.10.2016 Konstanz, Germany

André Mermoud, Bruno Wittmer Bruno.Wittmer@pvsyst.com

PVSYST SA - Route du Bois-de-Bay 107 - 1242 Satigny - Suisse www.pvsyst.com

Overview

Introduction

- Bifacial PV modules in PVsyst
- Modelling the backside irradiance

PVsyst model for bifacial shed installations

- Model describing shed installations
- Calculation of backside irradiation
- Some qualitative results

Summary and Outlook

PVsyst Photovoltaic Simulation Software

Modeling of PV installations

- From small residential to large utility installations
- Grid-Connected, Stand-Alone, Pumping
- Tracking Systems

High detail of simulation

- Near shadings from 3D drawings, Horizon definition
- Electrical mismatch model down to bypass diode granularity.
- Thermal model, optical losses, soiling, cabling losses, transformers, Ageing model, etc.

Detailed control of simulation parameters

- Many meteorological data sources can be imported and used
- Database with more than 10 000 PV modules and 3 000 Inverters
- Near shadings from 3D drawings, Horizon definition
- All loss and model parameters can be controlled by the user
- Many guiding messages and tools to help with the design
- Results with all intermediate calculations can be visualized and exported for further analysis

Follow evolution of PV technology

- Power optimizers
- Multi-MPPT inverters, string inverters
- Bifacial PV modules
- Etc.

Approach for Bifacial Modules in PVsyst

Treatment of bifacial modules

- Front side irradiance is added to backside irradiance x bifaciality factor (default is 0.8)
- From this Effective irradiance follows the IV-curve (single diode model).
- An additional mismatch factor is foreseen to account for inhomogeneous rear side illumination
- This approach is an approximation
- Nameplate power P_{nom} has to be front side STC power!

Front side irradiance Front side irradiance Lifective irradiance Lifective irradiance Lifective irradiance Lifective irradiance

10 V_{mpp} 15 V_{oc}

1500

500

The main challenge is to calculate the additional backside irradiance including its inhomogeneity

Irradiance Calculation and Ground Reflections

Standard PVsyst irradiance contributions

- Direct
 Subject to near shadings depending on sun position
- Diffuse
 Subject to shading factor that is constant for a given plane orientation
- Albedo

Subject to shading factor that is constant for a given plane orientation. Calculation of azimuth angles that are blocked

Introduced Near Ground Scattering

• Near Ground Scattering (for bifacial simulations) Light scattered back from ground that is close to the PV modules.

Subject to near shadings with solid angle calculation.

Depends on sun position!

Systems with Bifacial Modules in PVsyst

Basic approach for bifacial modelling

- Amount of diffuse and direct irradiance on back side
- Fraction of direct irradiance that reaches the scattering ground (depends on sun position)
- Fraction of diffuse irradiance that reaches the scattering ground (single factor)
- Ground Albedo for the scattering off the ground
- Factor for back and front side acceptance
 (View Factor)
- (Constant loss factor describing shadings of mounting structures, cabling and junction boxes)

Assumptions for ground scattering

- Direct and sky diffuse irradiance contribute to ground illumination
- Sky diffuse is isotropic
- The diffuse reflection is isotropic (Lambertian Surface) Only scattering is considered (no specular reflections)
- Non-homogeneous illumination of backside is neglected at this stage

Bifacial Modules in Sheds

Bifacial modules are used in different situations

Vertical mounting

PVsyst Model for regular shed configurations

Simplified 2D calculation Rows without boundary effects (infinitely long) Parameters:

- Tilt, Azimuth
- Width, Pitch
- Height above ground
- Ground Albedo

The factors for the bifacial calculation can be determined by integrating over the distance between rows

Direct irradiance is only computed for front side. Near ground scattering is only computed for backside.

*Standard PVsyst simulation

Calculation of Irradiance on Ground

Direct irradiance

Profile Angle and shed geometry determine the amount of directly illuminated ground surface.
 Height over ground and profile angle determine the position of the illuminated stripes

Diffuse irradiance

- Diffuse irradiance from sky is isotropic.
- Ground acceptance of diffuse light is a function of the position on the ground.
- It is constant over the year and needs to be computed only once.
- Underneath the sheds the irradiance is smaller.
- Inhomogeneity tends to level out with increasing mounting height.

Calculation of View Factors

Page 10

Backside acceptance of ground

(View Factor)

- Ground scattering is isotropic (Lambertian Scattering)
- View Factor is a function of the position on the ground.
- Underneath the sheds the view factor is large.
- Inhomogeneity tends to level out with increasing mounting height.

Ground scattering is isotropic (Lambertian Scattering)

Calculation of Total Ground scattering on Backside

Putting it all together

Normalized to horizontal

Jan FebMar AprMay Jun Jul Aug Sep Oct NovDecy ea

Irradiance on Ground is specific for location and geometry. In this case (Geneva):

- Almost no direct in winter
- Fraction of diffuse on ground is constant over the year

Combine Ground acceptance with **View Factor**

Irradiance

on ground

Page 11

Ground Scattering on Backside:

Example shed installation

Basic PV system with sheds:

90 kWp in

6 rows of 3 x 20 modules landscape Location Geneva, Switzerland: 46.3° N, 6.1° E 25° Tilt, 7.5m Pitch, 3m Width (GCR=0.4) Mounted 1m over ground Ground Albedo: 0.3 PV surface: 600 m² Ground surface: 33m x 45m = 1500 m²

Definition of bifacial shed model

3D shading scene

PVsyst Report with simulation results

Global incident on ground Ground scattering Backside view factor Front side view factor Diffuse sky irradiance on back side Beam irradiance on back side Shadings on backside Bifaciality factor Mismatch for back irradiance

Height over ground

Height over ground

With higher mounting, the opposite behavior of ground illumination and acceptance gets Diffuse acceptance attenuated. 0.9 0.8 0.7 0.6 Increase saturates around 2m (ground will appear homogeneously illuminated) 0.4 0.3 0.0 2 3 4 5 6 0 Distance below shed Height over ground Diffuse acceptance 0.9 0.8 11.5% 0.7 0.6 10.5% 0.5

Impact of Tilt and Pitch

Bifacial impact on best tilt

Best tilt is slightly higher for bifacial. Maximum in bifacial curve is slightly flatter. Bifacial definitions:

- 2 m above ground
- 80% bifaciality factor
- GCR: 40%
- Ground albedo factor: 0.3

Bifacial definitions:

- 2 m above ground
- 80% bifaciality factor
- Tilt: 25°
- Ground albedo factor: 0.3

Increase of pitch (row spacing) reduces mutual shadings and thus increasing the yield.

Ground in between rows also gets more irradiance, leading to an increased yield gain for bifacial systems.

Best pitch becomes much more of an optimization issue.

Optimization studies and Analysis

Full optimization has to consider Tilt together with Pitch

Bifacial installations prefer slightly higher tilt than monofacial

Detailed analysis possibilities

PVsyst provides a vast number of tools to perform default and custom analysis

ASCII output for custom analysis

	A	8	c	D			0	н		5		- U	
		P13137145.4											
2		File	File date	Description.									
3	Project	BeamStudie	00/00/00 00	Beandtadie	3								
4	Geographical Ste	Genève-Col	00/00/00 00	Genève Col	Switzerland	Europe							
5	Meteo data	Geneva MN	66/30/00-001	Ceneva	Netecrory	Synthetic							
6	Simulation varian	BeamShudie	38/30/17 17	United sh	with, bifacial								
7	Simulation date		38/30/1717	106									
9	Simulation	Mounty value	from 01/01/	10 31/12/90									
10													
11	date:	Globine	Destring	Diffine	Abirc	GlobShd	GlobEff	Georgen?	Reffict	Ornincik	Bendfillak	Georgi .	
12		w/m*	w/e/	win*	wie/	woins!	w/m*	w/w*	10/m ²	w/e/	w/w*	W/m*	
Sale.	17.08.1990-00.00	0	6		6			0		0			
5407	17.08.1990 01:08	0		0	6			0		0			
5400	17.08.1990.02.00									0			
5404	17.09.1990-02:00	0	6							0			
5490	17.08.1990.04:08	0	6	0	6			0		0			
5491	17.08.1990-05.00	0.4408	-0.4408	0.4466						0			
5492	17.09.1990-06:00	25.185	6	20.185	5,0007	15,581	14,629		6.126	26,346		1	
5400	17.08.1990-07.08	61.352	6	48,932	12.43	37,778	35,544	0	17.49	0.5528		• ¢	
5494	17.08.1990-08.00	123.06	5.5743	94.424	23.06	78,454	72.709	4.1382	27.35	0	0.58		
5495	17.09.1990.09:00	252.11	71,755	138.89	41.40	179.11	164.87	6.82	55.511	0	0.56		
5426	17.08.1990 10:00	97.627	3,2952	76,431	17.92	62.23	54.525	3,0496	20.783	0	0.56		
5.057	17.08.1990 13.08	68.451		51.601	33.845	99,811	87.454		18.507	0	0.54		
	· Bear	Studies VC2	HourtyRes 0	(*)									

Batch mode (parametric scans)

Ground reflection (Albedo factor)

Bifacial Gain as function of Albedo Factor

Ground Type	Albedo factor				
Worn Asphalt	0.12				
Bare Soil	0.17				
Green Grass	0.25				
Desert sand	0.40				
New concrete	0.55				
Fresh snow	0.8-0.9				

For common Albedo factor ranges (0.2 - 0.5) and the considered 90 kWp shed installation, the simulation predicts 7-16% bifacial gain.

Next Steps for PVsyst Bifacial Framework

Improvement of current bifacial model

Corrections still missing (important for vertical mounting):

- Circumsolar anisotropy for back side diffuse calculations
- IAM for direct light on back side and ground reflections
- The current simulation is recommended to be used only up to 60° Tilt

Model irradiance non-uniformity on back side

Model for bifacial PV modules on Trackers

Tracking devices are particularly challenging because the orientation and shading conditions are permanently changing. First step will be to model a 'dynamic' shed scenario (horizontal axis trackers)

Bifacial treatment of any PVsyst 3D scene

Statistical approach with a random distribution of ground points: Compute irradiance on ground points (Direct and Diffuse). Calculate view factors for all PV back sides. Limitations:

- No specular reflections
- Only the ground surface scatters back

Summary and Outlook

- Simulation of Bifacial PV systems with shed (row) layout is possible in PVsyst
 - V6.60 6.63 had an incorrect GCR factor (significantly underestimated yield)
 - V6.64: added sky diffuse irradiance on back side
 - V 6.65: added direct irradiance on back side
- Several approximations are made to handle the calculation
 - 2D shed model for shed layout (no border effects)
 - Ground reflection is diffuse and isotropic
 - Shadings of the mounting structure on the backside are accounted with a constant de-rate factor
 - An additional factor accounts for inhomogeneous illumination
- Main contributions of back side illumination are captured
- The approach will be generalized to allow the bifacial calculation for any 3D shading scene
- Validation with measured data (vertical installation) is in preparation
- Every feedback is very welcome!