premium technology standard by pasan

IEC 60904-1-2: Measurement of current-voltage characteristics of bifacial photovoltaic devices

V. Fakhfouri, bifiPV workshop, October 2017, Konstantz (DE)

Outline

G = 1 kWm⁻

- 1. IEC BiFi Standard; project status
- 2. Standard I-V measurement of Bifacial devices
- 3. I-V measurement challenges

 $G = 1 \text{ kWm}^{-1}$

IEC BiFi project status

MEYER BURGER

On 26th October 2017

Project A	Document Init. Current Next W Reference Date Stage Stage Gr	orking Project Fcst. Publ.	•
IEC TS 60904-1-2 ED1 Photovoltaic devices - Part 1-2: Measurement of current-voltage characteristics of bifacial photovoltaic (PV) devices	82/1289/CD 2016-02 ADTS TDTS WO	G 2 Vahid Fakhfouri 2018-03	
	Stage	Decision date	Target date
	PNW Proposed New Work	<u>23 Oct. 2015</u>	
	ANW Approved New Work	05 Feb. 2016	Mar. 2017
	ACD Approved for Committee Draft	06 Feb. 2016	Feb. 2017
	ADTS Approved for Draft Technical Specification	31 Mar. 2017	Apr. 2017
	A2CD Approved for 2nd Committee Draft	05 May 2017	May 2017
	CD Committee Draft	12 May 2017	May 2017
	PCC Preparation of CC Document	04 Aug. 2017	Aug. 2017
	ADTS	11 Aug. 2017	Feb. 2018
	TDTS Translation of DTS		Feb. 2018

premium technology standard by pasan

IEC BiFi standard method at a glance

	Analogy: T° coefficients	Measurement	Device	Output
Laboratory		Bifaciality measurement	Reference device	Bifaciality coefficients
	Determination of α , β , κ	Bifacial gain determination	Reference device	Bifaciality gain factor
Production	Pmax _{DUT-T°} measurement Pmax _{STC} (calculated)	STC measurement	Production batch (of the same BOM as the Reference)	Pmax _{STC} Pmax _{BiFi} (Calculated)

Step 1: Bifaciality measurementIn PV laboratory

non-irradiated background

Bifaciality coefficients: Front-side Rear-side * characterization characterization $\boldsymbol{\varphi}_{Isc} = \frac{Isc_r}{Isc_f}$ $\varphi_{Voc} = \frac{Voc_r}{Voc_f}$ $\boldsymbol{\varphi}_{Pmax} = \frac{Pmax_r}{Pmax_f}$ $\boldsymbol{\varphi} = Min(\boldsymbol{\varphi}_{Isc}, \boldsymbol{\varphi}_{Pmax})$ $G = 1 \text{ kWm}^{-2}$ $G = 1 \text{ kWm}^{-2}$

٠

Step 2: Bifacial gain determination

...In PV laboratory

MEYER BURGER

- Outdoor or Indoor with double-side illumination: at 1sun on the front side and G_{Ri} on the rear side (at least 3 levels)
- Indoor:

at equivalent 1-side irradiance levels G_{E_i} (at least 3):

$$G_{E_i} = 1000Wm^{-2} + \varphi \cdot G_{R_i};$$

 $i = 1, 2, 3, ...$
 $\varphi = Min(\varphi_{Isc}, \varphi_{Pmax})$
Example: For $\varphi = 80\%$,
 $G_{R_1} = 100Wm^{-2}$
 $G_{R_2} = 200Wm^{-2}$, ...
 $\Rightarrow G_{E_1} = 1080Wm^{-2}$, $G_{E_2} = 1160Wm^{-2}$

- Pmax reporting with 2 specific bifacial gains:
 - $Pmax_{BiFi10}$ with 1kWm⁻² on the front and G_R =100Wm⁻² or at G_E = 1kWm⁻² + φ . 100Wm⁻²
 - $Pmax_{BiFi20}$ with 1kWm⁻² on the front and G_R =200Wm⁻² or at G_E = 1kWm⁻² + φ . 200Wm⁻²

Examples of Pmax as a function of irradiance level on the rear side G_R (for outdoor or double-side illumination) or its 1-side equivalent irradiance G_E

Power rating of Bifacial PV devices

In practice

	Modules	Cells		
PV Laboratories	 STC (monofacial) measurement of the key data Reference module Bifaciality coefficients measurement Bifacial gain determination 	 STC (monofacial) measurement of the key data Reference cell Bifaciality coefficients measurement Bifacial gain determination 		
PV Production	 Calibration using the Reference module IV measurement of each device at STC, Pmax_{STC} reporting Pmax_{BiFi10} and Pmax_{BiFi20} calculation and reporting (based on Pmax_{STC} and BiFi gain factor) 	 Calibration using the Reference cell IV measurement of each device at STC, Pmax_{STC} reporting Bifaciality coefficients and Bifacial gain reporting (datasheet) 		

For Outdoor and Double-side illumination

- Non-uniformity of irradiance on the rear-side:
 - NU<5% indoor; <10% outdoor
 - Measured when the test area is simultaneously illuminated on both sides
 - Measured at all of the irradiance levels used
- Bare Cells contacting, with double-side illumination and different front- and the rear-side metallization
- Bare Cell's temperature measurement, with double-side illumination

C. Deline et al., (43rd IEEE PVSC): Simulated average rear irradiance and Non-uniformity across the module (right axis) on a module deployed at 37° tilt angle over light soil (0.21 albedo). NU reduces as z increases.

Non-irradiated background (for G_E method)

- Irradiance on the non-exposed side: < 3 Wm⁻²
- Use of apertures for Module testing strongly recommended

Pasan's Module Inspection System, MIS, and its bifacial-compatible black hood

premium technology standard by pasan

Irradiance measurements on the front- and the rear-sides							
	Front-side	Corner;	Corner;	Border;	Border;	Center;	Center;
	(reference)	w/o aperture	with aperture	w/o aperture	with aperture	w/o aperture	with aperture
vg. G	1000.32	17.84	0.96	12.52	0.97	0.98	0.56
Nm ⁻² 1							

Non-irradiated background for cell testing (1/3)

- Irradiance on the non-exposed side: < 3 Wm⁻²
- Background compensation by extrapolation of *Isc=f(Reflectivity_{chuck})* acceptable by the standard
- \rightarrow Contacting solutions evaluation by J. Levrat et al.

premium technology standard by pasan

РСВтоисн Contacting system

Pasan's

White

Grid^{TOUCH}

CSEM dev. platf.

PASAN (old)

PASAN (std)

premium

technology standard by pasan

Mean R=22.2%

Non-irradiated background for cell testing (3/3)

- Isc₀ determined by linear regression
- Possibility to reach the standard requirement for the Chuck reflectivity or to compensate it

	Isc ₀	allowed energy increase	Bifaciality	lsc increase max
n-PERT	9235.4	0.30%	0.87	24.1
HJT1	8912.3	0.30%	0.91	24.3
HJT2	8811.5	0.30%	0.92	24.3

	Isc ₀ [mA]
n-PERT	9235.4
HJT 1	8912.3
HJT 2	8811.5

premium technology

standard by pasan

Conclusion

- IEC 60904-1-2: I-V measurement of BiFi devices
 - Standard project in a very advanced stage
 - Reproducible method to assess bifacial devices and to value the bifacial gain
 - No requirement for new measurement equipment in PV productions
- BiFi measurement challenges
 - Uniformity of irradiance on the rear-side (outdoor, double-side illumination)
 - Bare cells contacting and temperature measurement (doubleside illumination)
 - Background compensation (achievable)

Thank you for your attention

MEYER BURGER

Pasan's new BiFi-← compatible module tester; <0.5% non-uniformity

Meyer Burger's n-type HJT bifacial modules with busbarless cells; CSEM's façade

premium technology standard by pasan

