

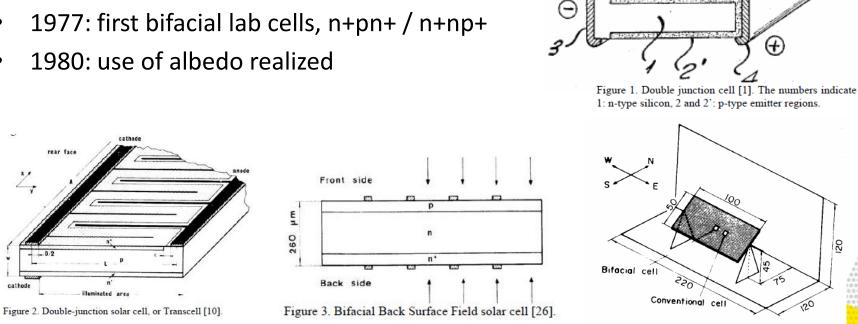
Bifacial solar cells - a brief overview

Ingrid Romijn

Bifacial solar cells

- Introduction
- Characteristics and physics
 - Bifaciality factor
 - Dependency on bulk, BSF,
- Bifacial solar cells

- Past & Present
- State of the art
- Metallization challenges
- New / innovative designs

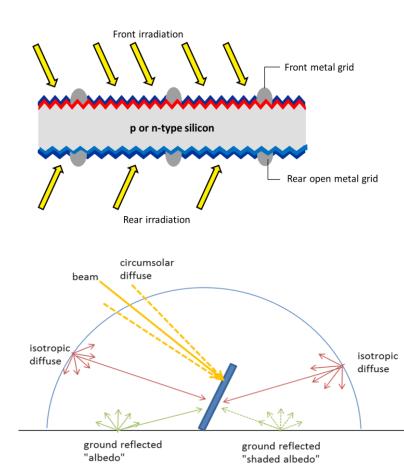


Bifacial solar cells

rear face

cathode

- 1960: first description of bifacial cell by H. Mori
- 1977: first bifacial lab cells, n+pn+ / n+np+
- 1980: use of albedo realized



 (\mathbf{f})

ecn.nl Ref: A. Cuevas, "early history of bifacial solar cells", 20th EUPVSEC 2005, Barcelona, Spain

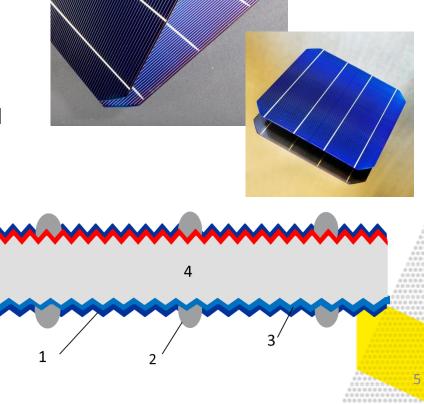
What is a bifacial solar cell?

- Simultaneous and efficient conversion of light that illuminates the solar cell from the front side as well as from the rear side into electricity
- A reflecting back sheet results in **increased monofacial module efficiency**
- A transparent rear generates additional energy, between 5% and 90% of the energy generated by only the front side.

Characteristics bifacial solar cells: bifaciality factor $\boldsymbol{\phi}$

 $\boldsymbol{\phi}$ = ratio between front and rear response

 $\varphi_{\eta} = \frac{\eta_{rear}}{\eta_{front}}$


Usually ϕ <1

bifacial solar cells are typically not symmetrical

- Emitter/BSF
- Metal patterns optimized for front efficiency

Main parameters influencing ϕ :

- 1. Rear texture and ARC
- 2. Metal coverage on the rear side
- 3. Rear side (BSF) doping and passivation
- 4. Base resistivity and lifetime

Characteristics bifacial solar cells: bifaciality factor $\boldsymbol{\phi}$

 $\boldsymbol{\phi}$ = ratio between front and rear response

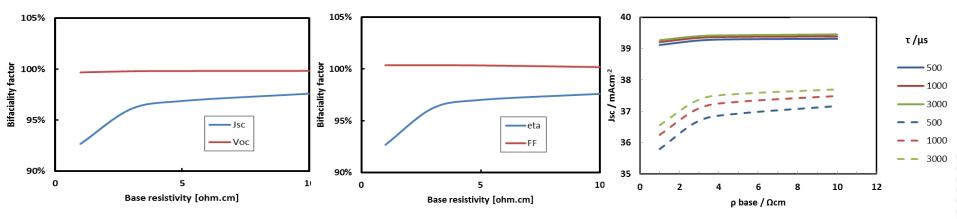
 $\varphi_{\eta} = \frac{\eta_{rear}}{\eta_{front}}$

Usually ϕ <1

bifacial solar cells are typically not symmetrical

- Emitter/BSF
- Metal patterns optimized for front efficiency

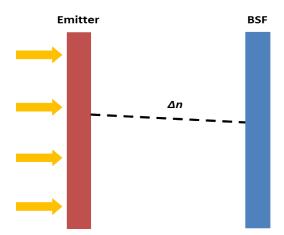
Main parameters influencing ϕ :


- 1. Rear texture and ARC
- 2. Metal coverage on the rear side
- 3. Rear side (BSF) doping and passivation
- 4. Base resistivity and lifetime

Effect of bulk resistivity and lifetime

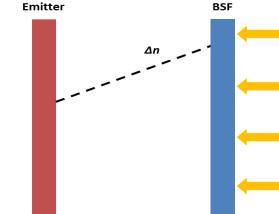
Atlas simulations on n-Pert solar cells

- ϕ_{Voc}, ϕ_{FF} : (close to) unity
- $\phi_{Jsc} = \phi_{eta}$


- J_{sc}: metal fraction + transport of carriers from illuminated side to other side
- High resistivity: lower $N_D \rightarrow$ less recombination \rightarrow higher bifaciality
- Higher bulk lifetime → higher bifaciality

Bifaciality in n-PERT – dependency on BSF

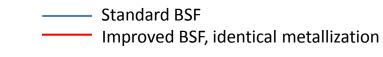
 $J_{recomb} = J_{0,BSF} \frac{\Delta n \cdot (N_D + \Delta n)}{{n_i}^2}$

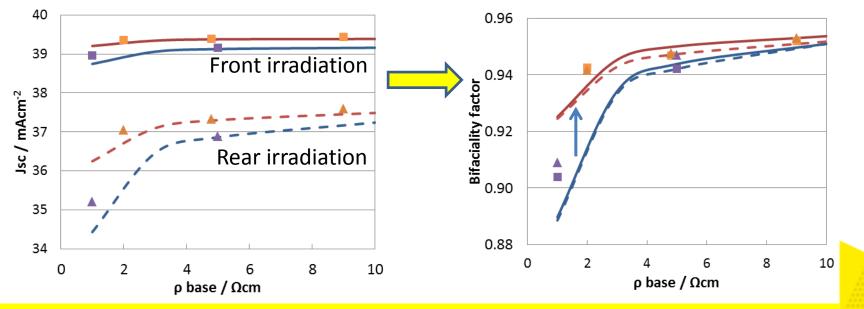

BSF:

- Lateral conductivity \rightarrow reduced metallization on rear
- Free carrier absorption
- Recombination (J_r)

Front illumination:

• Charge carrier transport to rear is field driven

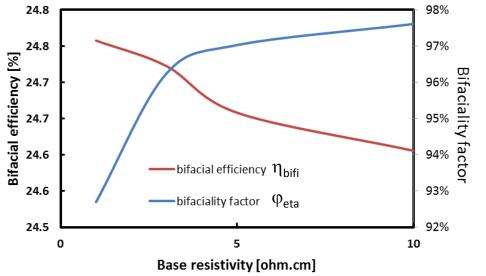



Rear illumination:

- Charge carrier transport to front is diffusion driven \rightarrow high Δn builds up near BSF
- \rightarrow Enhanced recombination

Effect of BSF

Measurement data from n-Pert cells; Atlas simulations Gaby Janssen



Improved J_{OBSF} (less Auger and surface recombination) -> improved bifaciality

Trade off bifacial efficiency and bifaciality in n-PERT

- Low base ρ : improved lateral conductivity \rightarrow increase in FF \rightarrow High η_{bifi}
- High base ρ : reduced rear recombination \rightarrow increase in ϕ_{eta}

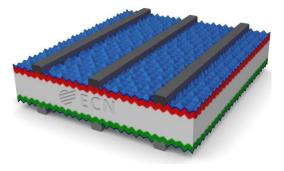
Bifacial efficiency = η_{bifi20} , calculated for 1000 W/m² front and 200 W/m² rear irradiation

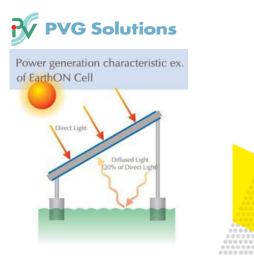
Cell design can be adapted for different resistivities

Cell design can be adapted for efficiency or bifaciality depending on module / application use

Bifacial solar cells

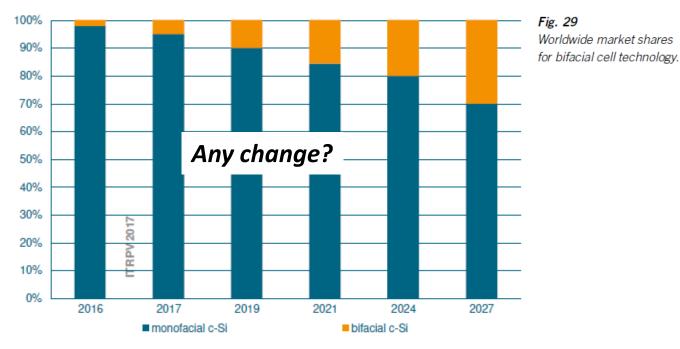
- Introduction
- Characteristics and physics
 - Bifaciality factor
 - Dependency on bulk, BSF,
- Bifacial solar cells

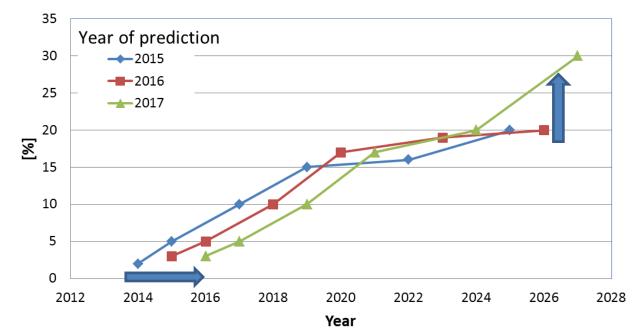

- Past & Present
- State of the art
- Metallization challenges
- New / innovative designs



Commercial bifacial solar cells

- 2000: Bifacial HIT cells from Sanyo in production
- ightarrow Symmetric metallization for thin wafers
- 2004 2008: large scale PV industry takes off....
- ightarrow With monofacial cells and modules
- 2010: Yingli commercializes ECNs n-Pasha cells¹
- \rightarrow Applied in monofacial modules
- 2011: PVGS starts with EarthOn technology²
 → Applied in bifacial modules


ecn.nl 1: A.R. Burgers, 26th EUPVSEC, Hamburg, Germany (2011) 2: S. Goda, 11th CSPV, Hangzhou, China (2015)

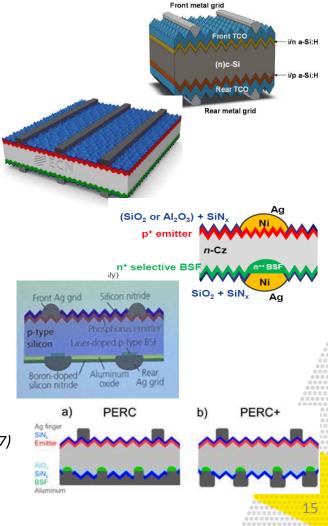

Bifacial cells predictions for the future

- First in appearance in ITRPV roadmap of 2017
- Bifacial cells become more and more prominent in the PV world
- Advanced cell concepts become industrialized all can be made bifacial

Bifacial cells predictions for the future

• Introduction slower then expected, but prediction becomes even more positive!

ITRPV prediction bifacial cells world market share [%]

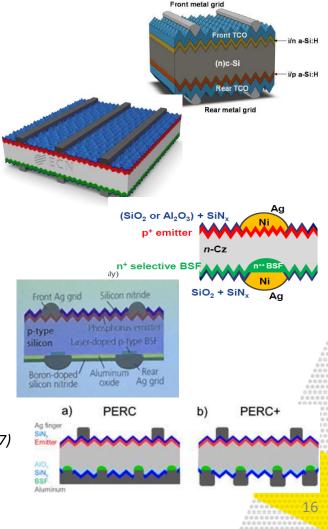


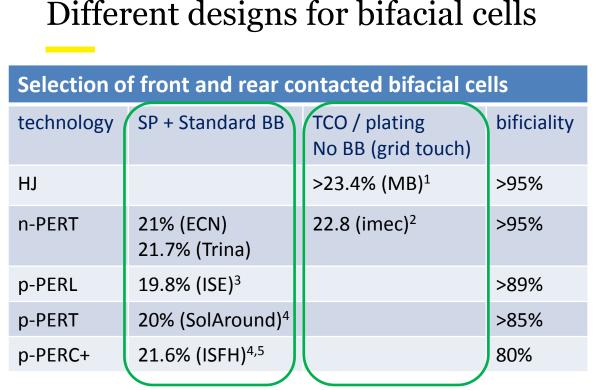
Diffe	ciit ucsigiis	IUI DIIACIAI C						
Selection of front and rear contacted bifacial cells								
technology	SP + Standard BB	TCO / plating	bificiality					
n-type	9	No BB (grid touch)						
HJ		>23.4% (MB) ¹	>95%					
n-PERT	21% (ECN) 21.7% (Trina)	22.8 (imec) ²	>95%					
p-PERL	19.8% (ISE) ³		>89%					
p-PERT	20% (SolAround) ⁴		>85%					
p-PERC+ p-typ	21.6% (ISFH) ^{4,5} e		80%					

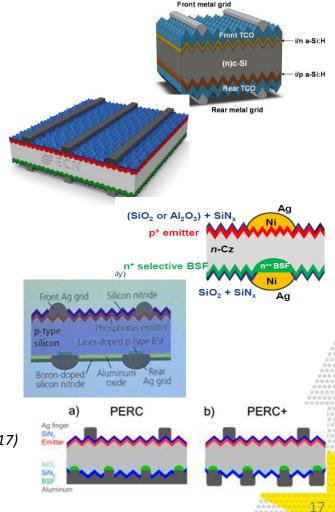
Different designs for hifacial cells

1: B. Strahm et al., 7th International Conference on Crystalline Silicon PV, Freiburg, Germany (2017)

- 2: R. Russell et al., 33th EUPVSEC, Amsterdam, NL (2017)
- 3: E. Lohmüller et al., 33th EUPVSEC, Amsterdam, NL (2017
- 4: S. Chunduri, M. Schmela, Bifacial Solar Module Technology, 2017 Edition, TaiyangNews
- 5: T. Dullweber et al., 31st EUPVSEC, Hamburg, Germany (2015)




	Different designs for bilacial cens									
_										
	Selection of front and rear contacted bifacial cells									
	technology	SP + Standard BB	TCO / plating	bificiality						
	Low T		No BB (grid touch)							
	HJ		>23.4% (MB) ¹	>95%						
	n-PERT	21% (ECN) 21.7% (Trina)	22.8 (imec) ²	>95%						
	p-PERL	19.8% (ISE) ³		>89%						
	p-PERT	20% (SolAround) ⁴		>85%						
	p-PERC+ High	21.6% (ISFH) ^{4,5}		80%						


Different designs for bifacial cells

1: B. Strahm et al., 7th International Conference on Crystalline Silicon PV, Freiburg, Germany (2017)

- 2: R. Russell et al., 33th EUPVSEC, Amsterdam, NL (2017)
- 3: E. Lohmüller et al., 33th EUPVSEC, Amsterdam, NL (2017
- 4: S. Chunduri, M. Schmela, Bifacial Solar Module Technology, 2017 Edition, TaiyangNews
- 5: T. Dullweber et al., 31st EUPVSEC, Hamburg, Germany (2015)

1: B. Strahm et al., 7th International Conference on Crystalline Silicon PV, Freiburg, Germany (2017)

- 2: R. Russell et al., 33th EUPVSEC, Amsterdam, NL (2017)
- 3: E. Lohmüller et al., 33th EUPVSEC, Amsterdam, NL (2017
- 4: S. Chunduri, M. Schmela, Bifacial Solar Module Technology, 2017 Edition, TaiyangNews
- 5: T. Dullweber et al., 31st EUPVSEC, Hamburg, Germany (2015)

	н	PERT / PERL	PERC+
Specifics	TCO + Low T Ag paste or plating front and rear	Ag/Al paste front and Ag paste rear	Ag paste front Laser opening + Al paste rear

	н	PERT / PERL	PERC+
Specifics	TCO + Low T Ag paste or plating front and rear	Ag/Al paste front and Ag paste rear	Ag paste front Laser opening + Al paste rear
Strength	Good line definition, High bifaciality	Good line definition High bifaciality	Easy upgrade from PERC, Mainstream

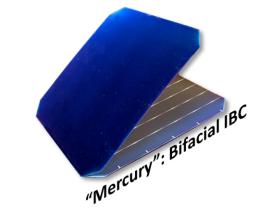
	н	PERT / PERL	PERC+	
Specifics	TCO + Low T Ag paste or plating front and rear	Ag/Al paste front and Ag paste rear	Ag paste front Laser opening + Al paste rear	
Strength	Good line definition, High bifaciality	Good line definition High bifaciality	Easy upgrade from PERC, Mainstream	
Challenges Low T metallization Need special module technology		Limited efficiency due to spiking of Ag/Al in emitter contacts	Limited bifaciality due to wide AI lines - lower ρ_{line} Alignment to laser	

	н	PERT / PERL	PERC+		
Specifics	TCO + Low T Ag paste or plating front and rear	Ag/Al paste front and Ag paste rear	Ag paste front Laser opening + Al paste rear		
Strength	Good line definition, High bifaciality	Good line definition High bifaciality	Easy upgrade from PERC, Mainstream		
Challenges	Low T metallization Need special module technology	Limited efficiency due to spiking of Ag/Al in emitter contacts	Limited bifaciality due to wide AI lines - lower ρ_{line} Alignment to laser		
Solutions	Smartwire (MB) or conductive adhesives	Selective emitters, reduce emitter contact area	Multi-Busbar Pattern recognition		

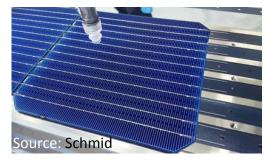
Current commercial bifacial cells

Selection of PV companies working on different bifacial cell technologies¹

technology	Eta	bifi						
HJ	22 – 23.5%	>95%	Sunpreme	3sun	Hanergy	Panasonic	Jinergy	
n-PERT	21 - 22%	>90%	Jolywood	Yingli	Adani	Linyang	Trina	LG
p-PERT	19 - 20%	>85%	SolAround	NSP	Shanxi Lu'	'n		
p-PERC+	21 - 22%	70%	SolarWorld	JA Solar	LONGi	Trina		

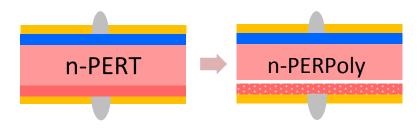


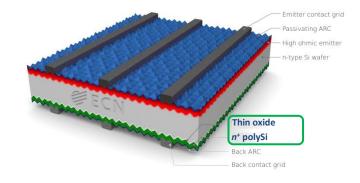
ecn.nl


1: S. Chunduri, M. Schmela, Bifacial Solar Module Technology, 2017 Edition, TaiyangNews

Novel concepts: Bifacial back contact

- Several examples published
 - ECN's n-MWT¹
 - ISC's Zebra IBC cell²
 - ECN's Mercury IBC cell³
- Bifaciality: 75% 83%

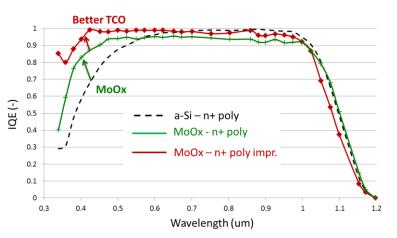

- Interconnection **so far R&D**:
 - standard soldering or gluing of ribbons
 - conductive backsheet
 - MultiWire or SmartWire

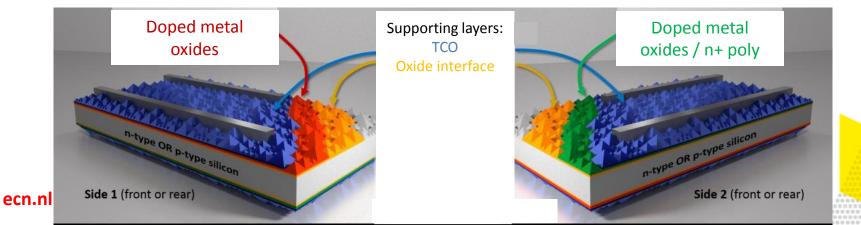

1: A. Gutjahr et al., 30th EUPVSEC, Amsterdam, NL (2014) 2: G. Galbiati et al., IEEE J. Photovolt., 3, pp. 560-563, (2013) 3. N. Guillevin et al., 33th EUPVSEC, Amsterdam, NL (2017)

Novel concepts: Industrial carrier selective contact cell

- n-PERT + n+poly-Si rear → ECN's PERPoly cell
- Efficiency potential: up to 23%

Passivated Emitter and Rear Poly cell


Properties


- 6 inch Cz material
- Print + fire through contacts
- Industrial, high throughput tools
- Bifacial → additional energy yield

Poly thickness	<i>iV_{oc}</i> (mV)	<i>V_{oc}</i> (mV)	J _{sc} (mA/cm²)	FF (%)	η (%)	Bifaciality
80 nm	697	676	39.7	80.0	21.5	86%
150 nm	693	675	39.6	80.4	21.5	81%

Novel concepts: transparent metal oxide contacts

- Bifacial solar cell with transparent & highly selective contacts at both sides
 - Hole selective: MoO_x, WO_x
 - Electron selective: TiO_x, ZnO_x:Al
- First results at ECN: Moly-Poly cell with
 - Eta 18.1%, clear gain in blue response

This workshop

- All bifacial cell concepts will be discussed:
 - PERC+, nPERT, pPERT and mcPERCT will be presented in this session
 - HJ (modules) will be presented in the next session
- Heterojunction, n-PERT and p-PERC+ are adopted by the industry
- Next generations bifacial cell concepts in R&D mainly presented at SiPV, EUPVSEC
 - And the next bifi workshop?

- All advanced cell concepts can be made bifacial
- Bifacial solar cells are a great way to increase the module output
- Large playground to tune cell design for bifaciality, efficiency, ease of processing and costs

- Heterojunction, n-PERT and p-PERC+ are adopted by industry
 - Next generations bifacial cell concepts in R&D
 - Bifacial cells are here to stay!

http://www.fototavling.nu/ExternaSkript/bidrag/kontraster/large/large_catch-the-sun-4311.jpg

Thank you for your attention!

Thanks to the ECN bifacial team:

Bas van Aken, John Anker, Paula Bronsveld, Anna Carr, Bart Geerligs, Astrid Gutjahr, Gaby Janssen, Martien Koppes, Eric Kossen, Ji Liu, Jessica Lu, Jochen Loffler, Agnes Mewe, Bonna Newman, Nienke Riezebos, Ingrid Romijn, Maciej Stodolny and Kees Tool

http://www.fototavling.nu/ExternaSkript/bidrag/kontraster/large/large_catch-the-sun-4311.jpg