

Overview: bifacial module concepts

Dr. Hartmut Nussbaumer, Zurich University of Applied Sciences

Requirements on a bifacial module

Lowest LCOE when used in a PV System

- Maximum energy harvest (NOC, bifacialiaty factor,...)
- Long lifetime (Partial shading behaviour, encapsulant & structure, interconnection...)
- Cost for mounting and installation comparable to standard

What is state of the art of commercial available bifacial PV modules?

Examples of bifacial modules Trina Solar

Features:

G/G; 2.5mm /2.5 mm

Frameless

P-type PERC technology, mono -Si

Efficiency range 17.2 – 18% at STC

Encapsulant: EVA

Junction box on the edge

3? Bypass diodes

Bifaciality factor: ?

Examples of bifacial modules Meyer Burger

Features:

G/G; 2.5mm /2.5 mm

Frameless

n-type HJT technology, mono -Si

Smart Wire interconnection technology

Efficiency range 17.8 - 19% at STC

Encapsulant: TPO

Junction box on the edge

3 Bypass diodes

Bifaciality factor: 93%

Examples of bifacial modules LG

Features:

G/ transparent BS
Aluminium frame
n-type technology, mono –Si
Multibusbar technology
Efficiency ~ 18.3% at STC

Examples of bifacial modules Yingli

BIFACIAL 144HCF

Features:

G/G; 2.5mm /2.5 mm 5 Bus-bar half cells, n-type mono -Si Efficiency range 16.6 – 17.6% at STC

Examples of bifacial modules Solarworld

Features:

G/G

p-type, mono –Si Efficiency 17.3% at STC Junction box on the edge Lattice-like white reflecting coating at the inside of the rear glass

Examples of bifacial modules Prism solar

GxB and HxB Series

Back view

Features:

HJ cell technology, Efficiency ~19.1% at STC 60 – 96 cell modules

Comparison

Company	Technology	Rated Module Efficiency STC	Speciality
Trina Solar	p-type Mono PERC, G/G	18%	
Meyer Burger	HJT, Mono, G/G	19.1%	Smart Wire, TPO encapsulant
LG Electronics	n-type Mono, G/BS	18.3%	Multiwire, Transparent BS
Yingli Green Energy	n-type Mono PERT, G/G	17.6%	Half cells 5BB
SolarWorld	p-type Mono PERC G/G	17.3%	Reflecting coating
Sunpreme	HJT Mono, G/G	19.1%	Large 96 cell modules

Current «industrial standard» for bifacial modules:

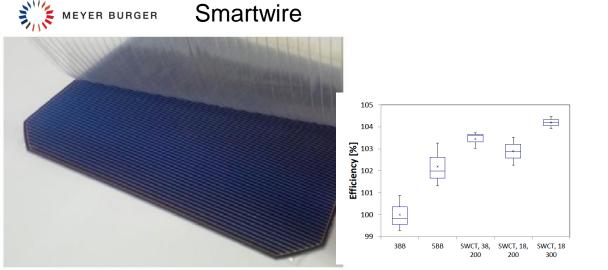
List incomplete!

Glas/Glas: 2.5/2.5 mm, 60 cells, EVA encapsulant, 5BB technology, *p-type PERC*, 3 Bypass diodes, JB at the edge not shading the cell area, Efficiency 17-18% at STC

Possible future trends and optimizations

- Interconnection technologies: SmartWire, Multibusbar, Half or even smaller cells?
- Reflective & antireflective coatings?
- New encapsulants and technologies?
- Glass/BS instead of Glass/glass?

Interconnection technologies

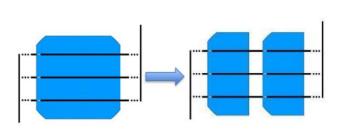

Interconnection technologies SmartWire, Multibusbar

Main advantages:

No busbars needed, reduced finger cross section needed

- ⇒ Reduced silver consumption
- ⇒ Reduced impact of cell breakage by increased number of current collection paths
- ⇒ Efficiency enhancement

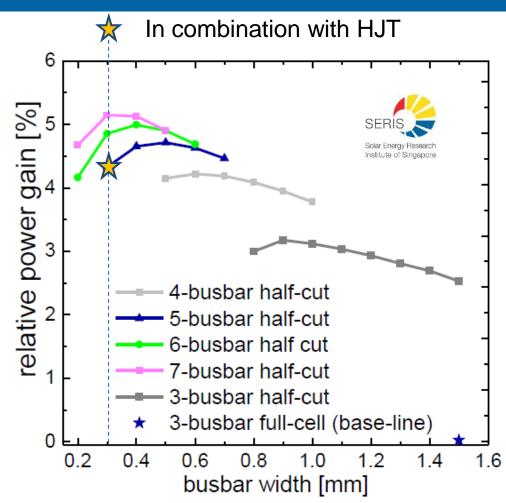
Multibusbar


12 Busbars

18-38 Wires

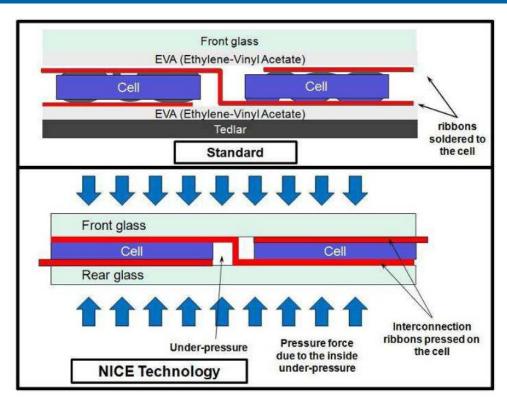
Source: T. Söderström et. al.; SMARTWIRE CONNECTION TECHNOLOGY

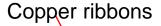
Interconnection technologies Half or smaller cells



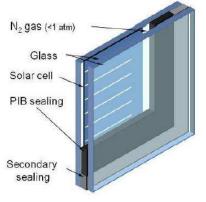
Source: Yong Sheng Khoo, Jai Prakash Singh, Min Hsian Saw Solar Energy Research Institute of Singapore National University of Singapore, bifi Workshop 2016, Miyazaki,

*Source: T. Söderström et. al.; SMARTWIRE CONNECTION TECHNOLOGY






Smaller cells have been proposed by Soria et. al. in order to reduce losses by inhomogenious illumination of the rear


Interconnection technologies NICE

NICE module

Main advantages:

No encapsulants needed => cost reduction

No busbars needed => reduced silver consumption

Thicker Copper ribbons without tin can be used => efficiency gain

No UV cut off from EVA

Multibusbar possible? Minimum width of busbars?

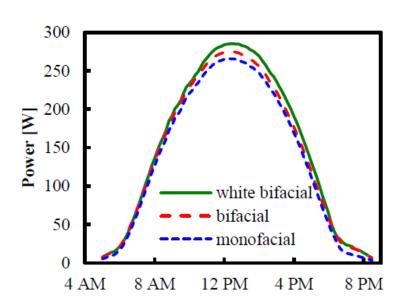
Interconnection technologies

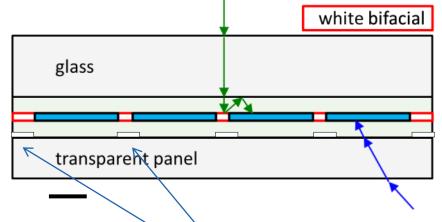
Subjective rating*

	5BB	5BB HC	Conductive BS	Multi- busbar	SmartWire	NICE
PERC, PERT	+	++	In comb. with MWT	++	++	Combined with 5BB /HC ++
HJT	0	0	In comb. with MWT or IBC	0	++	++
IBC (Zebra, Mercury,)	(√)	(√)	++ (bifacial?)	(√)	(√)	(√)

0 = suitable, + good fit, ++ special advantages, ($\sqrt{}$) suitable, but adaptions needed (isolating layers...

*Shingled/overlapping cells not included

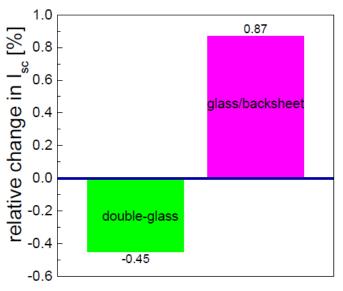




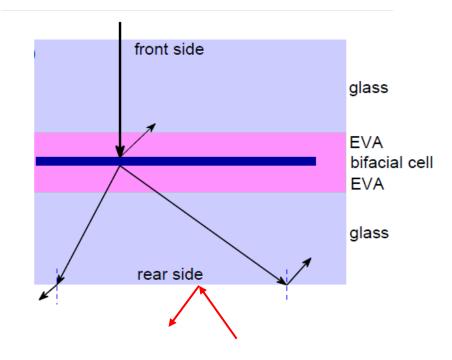
White bifacial module

+5% energy yield vs standard bifacial

B. van Aken EUPVSEC, Munich, Germany, 2016, Proceedings p. 43



Similar approach Solarworld


Source: Yong Sheng Khoo, Jai Prakash Singh, Min Hsian Saw Solar Energy Research Institute of Singapore National University of Singapore, bifi Workshop 2016, Miyazaki,

Solution: Using IR reflective coating on the rear side glass

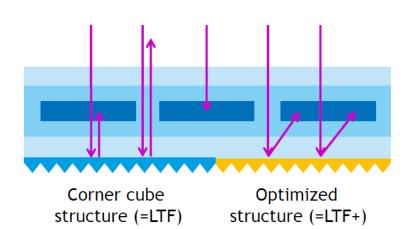
- =>Reflective coating only reflects IR
- =>Bifacial performance is maintained

Reflection of IR Photons from the back?

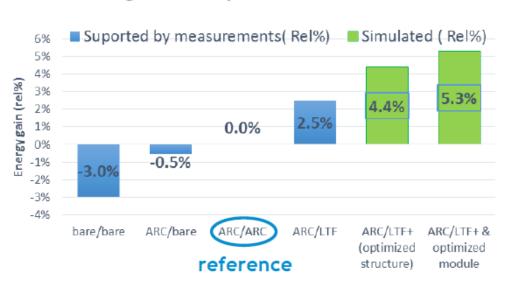


Combine with ECN approach?

Light-trapping technology Bi-facials



Source: Milica Mrcarica et. al., bifi Workshop 2016, Miyazaki,



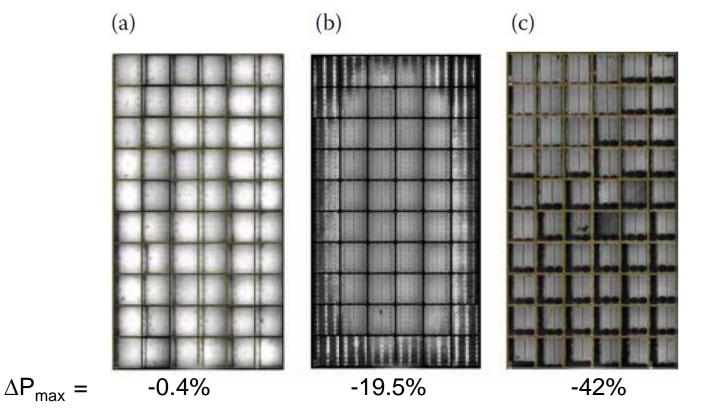
Light trapping film LTF

DSM BRIGHT SCIENCE. BRIGHTER LIVING.

Coatings roadmap for bifacial modules

Source: Milica Mrcarica et. al., bifi Workshop 2016, Miyazaki,

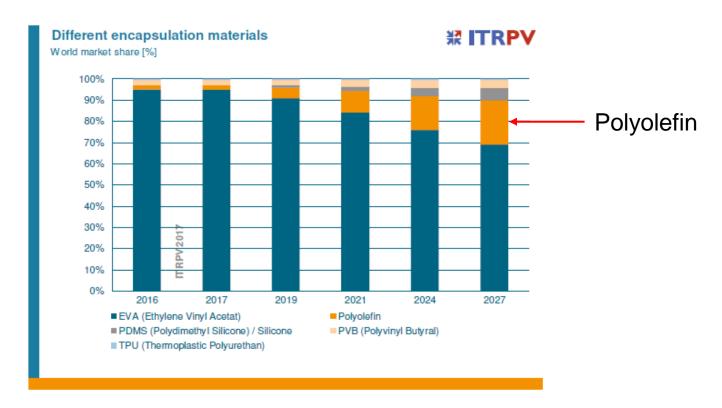
=> Substantial gains in energy yield can be achieved by using appropriate light trapping concepts



Encapsulants & structure for bifacial modules

Encapsulants & structure for bifacial modules

Ethylene vinyl acetate (EVA) is still the predominate encapsulant material


Source: Gianluca Cattaneo et. al.; "Lamination process and encapsulation materials for glass–glass PV moduledesign", Photovoltaics International Vol. 27, 2015

Electroluminescence analysis after DH: 85°C, 85% RH 7000h: (a) GG module (SWCT) laminated with TPO; (b) GG module with ribbon connection technology laminated with EVA; (c) GBS module with ribbon connection technology laminated with EVA.

Encapsulants & structure for bifacial modules

Belongs the future to thermoplastic polyolefines (TPO)?

Source: ITRPV 2017

Summary

- Major PV module manufacturers have a bifacial PV module in their product portfolio
- The current «industrial standard» for bifacial modules is a G/G: 2.5/2.5 mm, 60 cells, EVA, 5BB, p-type PERC, 3 Bypass diodes, efficiency 17-18% at STC, no shading JB box
- Several options for improvements of bifi modules are available such as
 - specialized reflecting & antireflective coatings,
 - advanced interconnection technologies,
 - optimized encapsulants