

Bankability: Choosing right materials on module level

28.09.2016, André Richter, Meyer Burger Technology AG

Value Chain

Inside value chain different measures

Guaranteed module power over lifetime

Real life you have reduce this value by:

- 3% to 5% module tolerance
- 2% for measurement tolerance
- Costs for measurement, decommissioning, energy yield loss, shipment etc.
- Some degradation mechanism is related to system (hot spots, failure of diodes)

Influences of different effects on energy yield

Technical property – economical impact

Faster payback > less risk of investment

Doping determines effective life time that can be yielded: R-tau-limit Implied Voc is independent of life time when material operates at R-tau-limit Meyer Burger / 16-09-30

7

Interaction of process – tool - material

Sinton lifetime data a_i-Si passivated Cz and Fz wafer.

O Meyer Burger / 16-09-30

PL Monitoring

Standard crystal growth 4.1ms (center)

Low grade crystal growth (tail) 1.9ms (center)

PL Monitoring optimum inspection technology for production and quality control

Source: Hennecke wafer inspection system

Monat: Dec

World map of temperatures zones

ambient C	elsius (celsius)	5	10	15	20	25	30	35	ပ္ပိ	
Irradiation (W/m2)		1000	1100	1200	1300	1400	1500	1600	-	
expected cell temp. (celsius)		35	43	51	59	67	75	83		
Technology	%/K		MPP power due to temperature							
STD	-0,43	96%	92%	89%	85%	82%	79%	75%		
PERC	-0,38	96%	93%	90%	87%	84%	81%	78%	$l \ln t_0 = 1.00/$	
HIT	-0,28	97%	95%	93%	90%	88%	86%	84%	Up to 12%	
HJT	-0,25	98%	96%	94%	92%	90%	88%	86%	difference	
CIGS	-0,22	98%	96%	94%	93%	91%	89%	87%	uncicite	
CdTe	-0,26	97%	95%	93%	91%	89%	87%	85%		
difference max-min		2%	4%	5%	7%	9%	11%	12%		

SWCT optimization sunny side

SWCT efficiency impact depends on the specific cell design and boundary conditions.

This simulation shows one example for the sunny side:

HJT SWCT GG

Higher energy yield (kWh/Wp)

Location: Lugano, Switzerland

Moderate Climate, average air temp. 11 °C, module working 22°C, max 40°C Module temperature average working 31°C, max 64°C

Period: 01.06.2014-31.12.2014

Measured independently by SUPSI

kWh/Wp ⊳	c-Si multi	HJT competitor	CdTe	CIGS	MB GG
Power [Wp]	262	244	79	175	288
Sum	reference	+ 2.9%	+ 5.6%	+ 4.1%	+ 13.7%
Overcast	reference	+ 0.1%	+ 1.9%	+ 0.5%	+ 15.4 %

MB GG Bifacial

- ✓ Excellent low light
- ✓ Low temp. Coeffi: -0.26%/K
- ✓ No LID, No PID

300 W <=> 342W_{eq(equivalent)}

Thank you

