

International Solar Energy Research Center Konstanz

REVIEW OF BIFACIAL PV SYSTEMS

J. Libal, R. Kopecek

Outline

- Motivation
- Definition
- PV systems overview
- -Conclusion

Field data regarding the energy yield (kWh/kWp) of bifacial PV systems are very important for the economic evaluation and the bankability of bifacial PV.
(Also because there is not yet a generally accepted, commercially available simulation tool)

Thereby, the following requirements have to be met in order to make the data relevant for the above mentioned scope:

- System composed of several module rows, each of them composed by several modules
- Monitoring period > several months, ideally at least 12 consecutive months in order to cover all seasons (varying diffuse light fraction)
- Subsystem with monofacial modules to be monitored simultaneously at the same site as a reference for determination of bifacial gain
- Meteo data (at least irradiance and module temperature) monitored

The bifacial gain is the metric that determines - together with the total cost of the installed bifacial PV system – the LCOE (€/kWh) and therefore the <u>economical viability of bifacial PV</u>

Definition of *bifacial gain:*
$$g_{bifacial} [\%] = \left(\frac{(e_{bifacial} - e_{monofacial})}{e_{monofacial}}\right) \times 100$$

with

- e_{bifacial}: specific energy yield (kWh/kW_p) of the PV system with bifacial modules
- e_{monofacial}: specific energy yield (kWh/kW_p) of the PV system with monofacial modules on the same site, with the same configuration and during the same time period

International Solar Energy **Research Center Konstanz**

In the following, a selection of bifacial PV systems and their electrical performance from literature, will be presented and summarized

bSolar - Germany (Geilenkirchen)

International Solar Energy **Research Center Konstanz**

Commercial installation, Geilenkirchen, Germany Monitored by Fraunhofer/ISE (20cm height above the rooftop, 78% reflectance white roof membrane, 9 months period) Results (*): Bifaciality Gain of 21.4%, Cell Effective Efficiency = 22.5%

- flat roof top with reflective membrane
- ground albedo 78%
- bifacial gain: 21.4%

bSolar – Germany (Berlin)

International Solar Energy Research Center Konstanz

Commercial rooftop installation, The Technology City of Adlershof, Berlin, Germany (40cm height above rooftop, 35% reflectance gravish stone roof cover) Results (*): Bifaciality Gain 11%, Cell equivalent efficiency = 20.5%

- flat roof top with greyish stone roof cover
- 35% • ground albedo

gravel

• bifacial gain: 11%

bSolar – Israel (Eilat-Eilot Desert)

Test site in the Eilat-Eilot Desert, Israel, supervised by the Arava Outdoor PV Validation Lab, Eilat-Eilot, Israel (70 cm height above ground, 50% ground reflectance) Results (*): 17.2% bifaciality gain vs. German modules, 21.7% cell equivalent efficiency

- ground mounted with sandy ground
- ground albedo 50%
- bifacial gain: 17.2%

bSolar – Israel (Jerusalem)

International Solar Energy Research Center Konstanz

- Solar field of 3x4 modules
- bSolar 170Wp module vs. Suntech 175 Wp module
- Bifaciality gain based on KWh/KWp comparisons
- Site parameters:
 - Ground reflectance (Albedo): ~50%
 - North-South (NS) distance (distance between rows, panel-panel center): 1.5m
 - East-West (WE) distance (panel-panel edge): 0.2m
 - Height (panel lower edge): 0.7m

- flat roof top with reflective membrane
- ground albedo 50%
- bifacial gain: 15 %

Monthly and Yearly Gain

Annual gain measured (Albedo 50%) : 15% Annual gain calculated (Albedo 90%) : 26%

PVGS – Japan (Kitami)

- small ground mounted with grass
- estimated ground albedo 23%
- bifacial gain: 14.6%
- small ground mounted with scallop shells
- estimated ground albedo 50%
- bifacial gain: 20.6%

ISC Konstanz – Egypt (El Gouna)

International Solar Energy Research Center Konstanz

- single bifacial module with one neighbouring monfacial reference module
- ground mounted with desert sand
- estimated ground albedo 30%
- bifacial gain: 22.3%

.(C.Comparotto et al., BIFACIAL N-TYPE SOLAR MODULES: INDOOR AND OUTDOOR EVALUATION, EUPVSEC 2014, Amsterdam)

Sanyo - Panasonic

International Solar Energy Research Center Konstanz

HIT Double (bifacial module)

HIT Double generates 17% to 25% more power depending on the tilt angle.

Panasonic

- configuration and geographic location unknown
- ground albedo: 40%
- bifacial gain: 17% (for 30% tilt angle)

(E. Maruyama, "Recent Technological Progress of High-efficiency HIT Solar Cells", PV Japan Tokyo, 24-26.07.2013) J. Libal, bifacial PV workshop Miyazaki, September 29th, 2016

Sanyo - Panasonic

International Solar Energy Research Center Konstanz

Module type	HIT [®] Standard	HIT Double®
Leistung der Anlage	2,10 kWp	2,00 kWp
Reflexionsrate des Untergrunds	64%	
Höhe der Montagestruktur	30 cm	
Winkel der Module	Neigungswinkel 20°, Ausrichtung: Süden	
Zeitraum der Messungen	11 2008 - 08 2009	
Installationsort	Geilenkirchen	
Messeinrichtung	Unter Aufsicht des Fraunhofer Instituts	
Installation	Pohlen Solar GmbH	

- ground albedo: 64%
- bifacial gain: 25.2%

(Sanyo module datasheet "HIT double 205", 10/2009)

PVGS/Nishiyama – Hokuto (Japan)

- system size 1.25 MW
- ground albedo (estimated): 20 %
- bifacial gain: 19.5%

(http://www.nishiyama-s-denki.co.jp/)

J. Libal, bifacial PV workshop Miyazaki, September 29th, 2016

Summary of bifacial gain vs. albedo

Summary of bifacial gain vs. albedo

Other important factors:

- climate (diffuse light, snow)
- installation height of modules
- distance between modules (rowto-row and within the rows)

rear side efficiency of modules

 design of modules and mounting racks (rear side shading)

Albedo of various ground typologies

surface	albedo
Dry dark soil	0.13
Grass	0.17-0.28 (avg. 22.5)
Dry sand	0.35
Dune sand	0.37
Old snow	0.4 - 0.7
Fresh snow	0.75 to 0.95

- Most ground surface typologies show an Albedo of over 20 %
- When installation site is **selected explicitely for bifacial PV, 30% or more** can be found.
- Using methods for **enhancing ground reflectivity** (covering the ground with white sand, scallops shells or reflective painting or sheets), **40% to 90%** ground albedo can be achieved.

Summary

 For suitable installation sites and system configurations, large bifacial PV systems produce 15% to 20% more kWh per year compared to monofacial PV systems with the same nominal (front side) peak power, installed at the same site.

- If special measures are taken, e.g:
 - <u>artificially increasing the ground albedo (white sand, gravel or white</u> paintings or coatings) and

• <u>increasing</u> slightly the installation <u>height of the modules</u> over the ground (usually, less than 1.5 m are sufficient \rightarrow see presentations about simulations at this workshop),

over 30% bifacial gain is expected even for large bifacial systems

In General: more field data regarding the energy yield of <u>large</u> bifacial PV systems is required in order to confirm the above statements !

Outlook - recent bifacial systems

TRACKED BiSoN Farm in Chile: **Enel** in "La Silla"

Total Systems size (monofacial + bifacial):

1.7MWp

Outlook - recent bifacial systems

International Solar Energy Research Center Konstanz

MegaCell:

- 2.5 MWp ground mounted
- location: Hormiga (Chile)
- installed, waiting for grid connection

Sunpreme:

- 12.8 MWp ground mounted
- location: eastern US
- installed
- \rightarrow more field data on bifacial gain of utility scale systems to come very soon $\, ! \,$

nPV WS: April 5/6, 2017 in Freiburg

