BIGEYE:

Accurate energy yield prediction of bifacial PV systems

www.tno.nl

P.O. Box 15 1755 ZG Petten The Netherlands

A.R. Burgers, G.J.M. Janssen, B.B. Van Aken

Corresponding author: teun.burgers@tno.nl

Motivation

- Give stakeholders trust in
 - bifacial plant design

Flexible geometry

- Sheds:
 - arbitrary positions and tilt

- lower cost of electricity generation by bifacial PV
- the anticipated return on investment
- Through accurate kWh predictions
 - at specific locations
 - based on (hourly resolved) climate data
- Diffuse reflection
 - from ground and walls
- Single Axis Tracking (SAT)

Proven

- Based on earlier versions¹
- Benchmarked²

Sky irradiance on a configuration of 2 sheds and a single diffuse reflecting wall behind those sheds

Irradiation model

- Direct radiation components
 - beam, circumsolar
 - sky dome
 - horizon brightening/darkening
- Indirect, using full 3D view factors
 - diffuse reflection of the ground
 - diffuse reflection of other reflective

Meteo and module optics

- Perez model
 - for single shed, front and rear side
 - circumsolar (CS) component
 - horizon brightening or darkening
 - account for shading in CS and horizon

Cells, blocks, strings

- Cell I-V from front- and rear irradiance and module thermal properties
- Block:
 - set of cells protected by by-pass diode
- Partial shading on cells
 - has impact on block output,

- surfaces
- adaptive meshing
- Account for shading effects in all components
- Module optics:
 - AOI modifiers
 - homogeneous transparency

then on string output

effects handled with Rodrigo's model³

Example: varying pitch, size and tilt angle of sheds

rear side: total irradiance

Example: varying pitch for vertical PV system

- 6 sheds consisting of 6x2 bifacial modules
- n-PERT modules, 300 Wp, with 75% bifaciality factor
- landscape, ground clearance 1 m

Reflecting wall impact

See figure on top right of poster

- Wall limits view of sheds on sky:
 - diffuse sky irradiance reduced near wall
- Wall diffusely reflects sky- and beam it receives:

- location: Petten, the Netherlands
- inset: daily yield for three pitches, sunny day in June

Pitch [m]

- Large pitch: 1140 kWh/kWp
- Below 5-7 m, energy yield decreases rapidly
- Direct shading is dominant factor ~65% of total loss
- Less sky contributions (view factor limitations) and less ground reflection amount to 35% of yield loss

adds to irradiance on sheds

Acknowledgements

project Biface: Netherlands Enterprise Agency, www.rvo.nl solar-era.net, www.solar-era.net TKI Solar Energy, www.tkisolarenergy.nl project BING:

1. G.J.M. Janssen et al., Energy Procedia **77** (2015) 364 2. M. Klenk, biforot project, this workshop **3.** Rodrigo et al., Solar Energy **93** (2013) 322