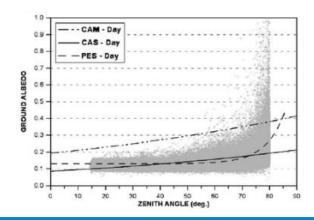

NREL Bifacial PV Workshop 2018


Ben Bourne | September 11, 2018

Albedometer measurements

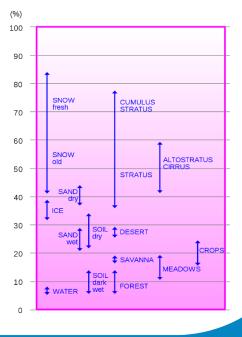


Spectral & incidence angle response





#### Published albedo data


| Surface                    | Typical<br>albedo                                |
|----------------------------|--------------------------------------------------|
| Fresh asphalt              | 0.04 <sup>[4]</sup>                              |
| Open ocean                 | 0.06 <sup>[5]</sup>                              |
| Worn asphalt               | 0.12 <sup>[4]</sup>                              |
| Conifer forest<br>(Summer) | 0.08, <sup>[6]</sup> 0.09 to 0.15 <sup>[7]</sup> |
| Deciduous trees            | 0.15 to 0.18 <sup>[7]</sup>                      |
| Bare soil                  | 0.17 <sup>[8]</sup>                              |
| Green grass                | 0.25 <sup>[8]</sup>                              |
| Desert sand                | 0.40 <sup>[9]</sup>                              |
| New concrete               | 0.55 <sup>[8]</sup>                              |
| Ocean ice                  | 0.5-0.7[8]                                       |
| Fresh snow                 | 0.80-0.90[8]                                     |

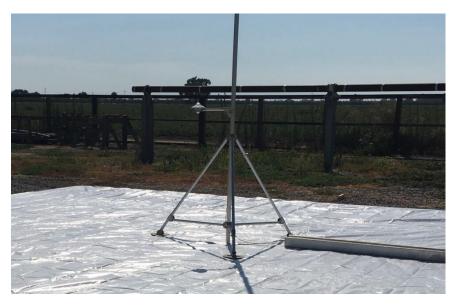
| Surface            | Albedo      |  |
|--------------------|-------------|--|
| Soil               | 0.05 - 0.40 |  |
| Sand               | 0.15 - 0.45 |  |
| Grass              | 0.16 - 0.26 |  |
| Agricultural Crops | 0.18 - 0.25 |  |
| Tundra             | 0.18 - 0.25 |  |
| Forest             | 0.05 - 0.20 |  |
| Water              | 0.03 - 1.00 |  |
| Snow               | 0.40 - 0.95 |  |
| Ice                | 0.20 - 0.45 |  |
| Clouds             | 0.30 - 0.90 |  |

Figure 2 Albedo values for various Earth surfaces. Adapted from www.eoearth.org.

#### **Ground Surface Albedo Values**

| Surface type                | Albedo  |
|-----------------------------|---------|
| Green field (grass)         | 23%     |
| Concrete                    | 16%     |
| White-painted concrete      | 60%-80% |
| White gravel                | 27%     |
| White roofing metal         | 56%     |
| Light-gray roofing membrane | 62%     |
| White roofing membrane      | >80%    |
|                             |         |




## Objectives

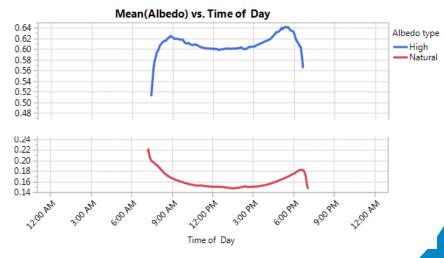
- 1. Demonstrate two methods for obtaining and evaluating localized ground albedo
- 2. Share ground albedo measurements from three different test facilities
- 3. Calibrate expectations for albedo conditions at installation sites

### Ground Albedo – Measurement Methods

### Pyranometer measurements

- Dual thermopile pyranometers
- Reference cell measurements
  - Two Standard SunPower IBC cells assembled back-toback in a glass-glass coupon
- Site considerations
  - Low sensitivity to mounted height
  - Low sensitivity to mounting extension
  - Surface under albedometer modified with seasonal changes to ground conditions






#### SunPower R&D Ranch - Davis, CA

- Albedometer
  - Dual Kipp & Zonen CMP11
- Ground cover & Albedo
  - Dry compacted gravel: 15-18%
  - White ground cloth: 60-64%
- Published Albedo
  - Worn asphalt/gravel: 12-33%
  - Snow/white painted surface: 60-90%
- **NSRDB** Albedo
  - Pre-test site (dirt): 14-18%
- Potential Albedo error
  - Davis Site: 0-18%
  - Winter: 0-30%





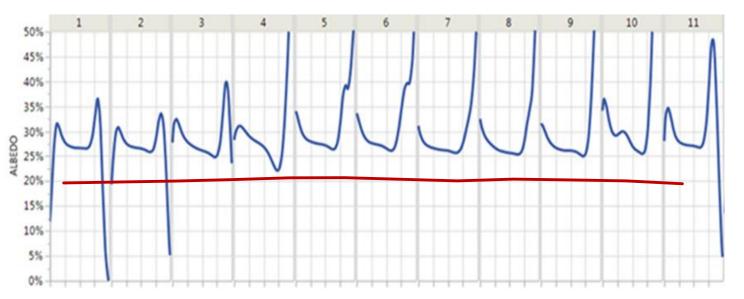




#### Sacramento, CA

- Albedometer
  - Dual Kipp & Zonen CMP11
- Ground cover & Albedo
  - Summer Straw base (dry): 18-23%
  - Winter Dirt/Grass: 25-30%
- Published Albedo
  - Dry grass: 28-33%
  - Green grass: 16-26%
- NSRDB Albedo
  - Summer: 20-22%
  - Winter: 15-20%
- Potential Albedo error
  - Summer: 0-10%
  - Winter: 5-15%






#### TEP – Tuscon, AZ

- Albedometer
  - Reference cell
- Ground cover
  - Dirt/Weeds (dry): 25-30%
- Published Albedo
  - 15-35%
- NSRDB Albedo
  - 20-22%
- Potential Albedo error
  - 10-15%







## Summary & Conclusions

- Albedo varies throughout the day with sun angle
- Albedo varies seasonally with changes in moisture, ground vegetation
- Published data show large ranges of constant albedo values

- Local field measurements are important for characterizing local albedo variation
  - Errors in assumed ground albedo can result in up to ~5% error in annual bifacial gain
  - Typical measurements don't account for lower albedo in shaded areas
  - Seasonal variation at project site (temperatures, moisture, shade, etc.)
  - Potential ground-cover changes at project site (vegetation, soiling, etc.)

### References

- https://www.nrel.gov/docs/fy12osti/54824.pdf (from ERBE)
- https://www.sciencedirect.com/science/article/pii/S0038092X05001507
- SolarWorld, Calculating-Additional-Energy-Yield-Through-Bifacial-Solar-Technology-SW9002US.pdf
- http://www.uni-miskolc.hu/~ecodobos/14334.pdf
- Haider Taha, David Sailor, Hashem Akbari, High-Albedo Materials for Reducing Building Cooling Energy Use, Energy and Environment Division Lawrence Berkeley Laboratory, 1992.
- REC18\_Solar\_PV\_Performance\_and\_New\_Tech\_J.Stein.pdf
- Psiloglou, Basil & Kambezidis, Harry. (2009). Estimation of the ground albedo for the Athens area, Greece. Journal of Atmospheric and Solar-Terrestrial Physics. 71. 943-954. 10.1016/j.jastp.2009.03.017
- Psiloglou, Basil & Kambezidis, Harry. (2009). Estimation of the ground albedo for the Athens area, Greece. Journal of Atmospheric and Solar-Terrestrial Physics. 71. 943-954. 10.1016/j.jastp.2009.03.017.
- Sailor, D. J., Resh, K., & Segura, D. (2006). Field measurement of albedo for limited extent test surfaces. Solar Energy, 80(5), 589–599. <a href="https://doi.org/10.1016/j.solener.2005.03.012">https://doi.org/10.1016/j.solener.2005.03.012</a>
- Russell, Thomas C. R. et al. "The Influence of Spectral Albedo on Bifacial Solar Cells: A Theoretical and Experimental Study." *IEEE Journal of Photovoltaics* 7 (2017): 1611-1618.



# Thank You

Let's change the way the world is powered