

A SIMPLIFIED METHOD TO APPROXIMATE BIFACIAL SYSTEM MISMATCH LOSSES

Canadian Solar Inc. Recurrent Energy, Rhonda Bailey System technology center, Jean-Nicolas Jaubert,

August 2018

CSIQ NASDAQ Listed

Methodology introduction

Mismatch loss evaluation results

Additional effect of racking shadings

Conclusion & Next steps

Methodology introduction – Overview

Canadian Solar Inc.

• Racking system detailed features and posts are not considered

Methodology introduction – Main tools

PVMismatch (Sunpower)

- An explicit Python PV system IV & PV curve trace calculator which can also calculate mismatch.
- Two-diodes model.

Bifacialvf (NREL)

- PV View Factor model for system performance calculation.
- Allows rear irradiance spatial non-uniformity simulation (hourly front and rear irradiance for each cell rows) for both fixed and single-axis tracker systems.

Open source codes available on GitHub

Methodology introduction – Calculation flow

Canadian Solar Inc

N is the number of hourly data points of the whole year, excluding rear irradiance $\leq 15W/m^2$. To reduce computation time, representative days can be properly selected through the year instead.

Study case – Location selection

Location	Latitude	Longitude	Altitude (m)	Mean global horizontal irradiance GHI (W/m2)	Mean diffuse horizontal irradiance DHI (W/m2)	DHI/GHI
Suzhou (China)	31.5	120.6	30	147	98	67%
Golmud (China)	36.4	94.9	2809	221	71	32%

Two locations, Suzhou and Golmud, with respectively very high and low DHI/GHI ratios are selected.

Study case – Cell IV data & module type choice

Module type:

- Canadian Solar Inc. CS3U-PB-FG (frameless) model.
- 144 poly PERC half-cells bifacial module type

SPS electrical layout (Series-Parallel-Series)

Cell production IV data:

 Using front & rear half-cell I-V data and typical cells reverse data.

Front Isc distribution

Rear Isc distribution

Study case – System and modules connection topology

Mounting type	Module connection topology	Module orientation	Strings in parallel
	Row 1 8 Row 2	Portrait	1
Eived		Portrait	2
racking	Row 1 & Row 2 Row 3 & Row 4	Landscape	2
	Row 1 Row 2 Row 3 Row 3 Row 4	Landscape	4
		Portrait	1
SAT tracker	Row 1 & Row 2	Portrait	1
tracker		Portrait	2

Application	High DHI/GHI ratio	Low DHI/GHI ratio			
System voltage	1000V				
Modules per string	20	18			
Location	Suzhou	Golmud			

Methodology introduction

Mismatch loss evaluation results

Additional effect of racking shadings

Conclusion & Next steps

Mismatch loss for different system layouts and connection topology

- For **0.2 soil albedo**, power mismatch losses within **0.1% to 0.4%** range.
- Similar losses for fixed and tracker arrays, 1P/2P trackers, and different DHI/GHI ratios.

Mismatch loss sensitivity – Albedo

- Mismatch loss **increasing faster as albedo increases**, up to 1.1% for worst case.
- Slightly higher loss for location with low DHI/GHI ratio apparent under high albedo.

Mismatch loss sensitivity – Racking height

Fixed								
Mounting type	GCR	Albedo	Tilt Angle (°)					
2 portrait	0.45	0.2	30					

Tracker								
Tracker type	GCR	Albedo	Tilt Angle (°)					
1 portrait	0.40	0.2	±45					

 Mismatch loss decreases along with elevation increases, benefit above 1-1.5m is negligible, both for tracker and fixed racking.

Methodology introduction

Mismatch loss evaluation results

Additional effect of racking shadings

Conclusion & Next steps

Changshu field trial test platform – Overview

Albedo meters

Rear side silicon sensors

Front side POA sensors

Rear irradiance non-uniformity measurements

 $\overline{\Pi}\overline{\Pi}$

- Continuous measurement of irradiance non-uniformity on tracker system through specially built module.
- Similar trend observed as reported by mainstream SAT tracker suppliers.
- Data used to estimate shading effect of torque tube and apply in the mismatch calculations (constant value).

Rear irradiance non-uniformity – Measured vs simulated

Rear irradiance non-uniformity – Measured vs simulated

Middle cell rows irradiance/average cell rows irradiance – Rear side

- Same trend with March 5 and 10 can be observed on June 28 and July 15.
- For 0.15~0.3 albedo, assuming tube shading level 20%, measured and simulated irradiance distributions show matching trends.
- Similar assumption valid for 0.2 albedo, to be verified for higher albedo.

Cell rows shading definition

Fixed racking – 2P

- Shading percentage due to racking structure fixed to constant value for the annual mismatch calculations.
- Shading profile applied to 10 half-cell rows, estimated from field measurements (20% shading on middle two rows).
- Same shading profile applied for fixed racking system (*to be verified, on-going measurements*).

Mismatch loss results – Tracker case (Suzhou, albedo 0.2)

 Considering worst case shading level 40%, total mismatch loss is bound to 0.3%, additional mismatch loss contribution due to shading of torque tube is only 0.1%.

Mismatch loss results – Tracker case (Suzhou, albedo 0.8)

- Considering worst case shading level 40%, additional mismatch loss contribution due to shading of torque tube significantly increases, up to 1.9%.
- Must optimize torque tube to module height for high albedo scenario.

Mismatch loss results – Fixed racking case (Suzhou, albedo 0.8)

Canadian Solar Inc.

 Considering worst case shading level 40%, additional mismatch loss contribution due to shading of mounting rails shading effect contribution is 0.6%.

Note: irradiance non-uniformity data for fixed racking is being collected, calculations use same assumptions as for the tracker case.

02

Mismatch loss evaluation results

Methodology introduction

Additional effect of racking shadings

Conclusion & Next steps

Conclusions

Mounting structure effect included	Albedo	Mounting structure	Conditions	Total mismatch loss	Remark
No	20%	Fixed & Tracker	Height 0.5-2m	0.1%~0.4%	Considering all kinds of module connection topology
	80%	Fixed Tracker	/	1.1% 0.6%	Mismatch loss increases significantly with albedo
Yes	20%	20% 80% Tracker	Shading level 40% High DHI/GHI ratio site	0.3%	Torque tube contributes 0.1%
	80%			2.2%	Torque tube contributes 1.6%
	80%	Fixed		0.8%	Mounting rails contribute 0.6%.

- Simple approach using open-source tools to estimate bifacial system mismatch losses, applicable for any common Photovoltaic system designs.
- Tracker racking structure has large contribution to mismatch loss for high albedo cases, also certain hot spot risk associated, **6 cm minimum gap** recommended between rear glass and torque tube.

24

Canadian Solar Inc

Next steps

- Extend field testing and rear irradiance non-uniformity to higher albedo cases (reflective film with 0.7 albedo).
- Further validate the mismatch loss simplified calculations combining ray tracing and PVMismatch tool, including array edge effects.
- Optimize module design with transparent gap located at the module center position, allowing light transmission and reflection on SAT torque tube (higher average rear irradiance, flatter profile).

Thank you for your attention

2018/8

Back up slides

Methodology introduction – Data process method selection

Yearly mismatch loss B =
$$(\sum_{1}^{N_B} Modules power) / (\sum_{1}^{N_B} (Cells Power) - 1)$$

Method B is a time-saving way to provide accurate results

 N_B is the number of hourly data points of 10th, 20th and 28th in each month, excluding rear irradiance \leq 15W.

Changshu field trial test platform – Introduction

		Module type	Module quantity	DC capacity (Kw)	Inverter			
ltem	Mounting type				Name	Nominal power	MPPT number	Max input current
SAT1	Single axis tracker	CS3U-MS-FG	10	3.71	GROWATT 1000TL3-S	10kW	2	13A
SAT2			10	3.70				
SAT3		CS3U-MB-FG	10	3.67		10kW	2	13A
SAT4			10	3.69				
FT5	Fixed tilt	CS3U-MB-FG	12	4.41	GROWATT	1044	2	124
FT6		CS3U-MS-FG	12	4.45	1000TL3-S	TOKAA	2	ISA
FT7		CS3U-MB-FG	6	2.20	GOODWE		2	11.0
FT8		CS3U-MS-FG	6	2.22	GW5000-DT	JKVV	Z	IIA

DC/AC ratio <0.75 (SAT) <0.9 (fixed)

Changshu field trial test platform – Ground Albedo measurements

- On sunny days, measured albedo relative differences for pyranometer and silicon cell sensors below 3%.
- On cloudy & rainy days, measured relative differences increasing significantly (unexplained, on-going verification).

ASTM E1918-16 "Standard Test method for measuring solar reflectance of horizontal and low-sloped surfaces in the field" recommended albedometer height is 0.5m

BiKu Module reliability test data – Hot spot 200h

 CSI half-cell technology BiKu Module with excellent hot spot performance and endurance. Power degradation <0.2% observed after severe ASTM 200h hot spot test (1000W/m² front + 150W/m² rear), no fingerprint interruption or other EL defects observed.

CSI Milestones

- No.1 silicon module solar plant developer by GTM 2017
- No. 1 Module Supplier for Quality and Performance/Price Ratio in IHS Module Customer Insight Survey
- BNEF Tier 1 solar company
- One of the leading companies in the 2017 PV Triathlon of PHOTON Consulting, based on financial health, profitability and sustainable strategy

Module capacity above 9 GW Bifacial module up to 488W & eff. 24.5% , shipment guidance above 500 MW Poly HiKu up to 405W , eff. 18.3% Mono HiDM up to 330W , eff. 19.9%

CSI Bifacial module at a glance

- BiKu CS3U
 Front side power up to: Mono 375 W Poly 365 W
 Front side eff. up to: Mono18.8% Poly18.3%
- BiKu CS3K
 Front side power up to: Mono 315 W Poly 305 W
 Front side eff. up to: Mono18.8% Poly18.2%
- Up to 30% more energy yield due to back side power generation
- Low NMOT: (42 ± 3 °C)
- Low temperature coefficient (Pmax): -0.37 % / °C
- Better shading tolerance

