BiFaTest: Characterization of bifacial solar cells and modules

Characterization of bifacial mini-modules

<u>Sebastian Dittmann</u>¹, Stephan Krause¹, Jörg Bagdahn¹, Torsten Brammer², Sascha Eselfelder²

¹Anhalt University of Applied Sciences ²Wavelabs

www.hs-anhalt.de

5th bifi PV Workshop, 10th - 11th September 2018, Denver, CO

Agenda

- Introduction
 - Anhalt University of Applied Sciences
- Motivation
- Definition measurement protocol
- Indoor test set-up
- Samples
- Results
 - Spectral response and low light behavior
 - Spectra Unlike AM1.5g
 - Single side and double side illumination
 - Bifaciality at different irradiances
 - Comparison of methods
- Summary

Anhalt University of Applied Sciences

- largest university of applied sciences in Saxony-Anhalt
- ~8,000 students (over 2,600 international students)
- bachelor's- and master's degrees, full time and distance learning programs

Research:

- BMBF funding "Inovative Hochschule" www.forza-anhalt.de
- Pratner of TruePower[™] Alliance of SERIS
- BMBF funding "Wüstenmodule" (challenges of desert module applications)

Test facility at HSA PV Module and System monitoring

- Flexible mounting structures for different applications of bifacial modules
- PV module monitoring to measure maximum power output in real operating condition
- 30 kWp grid-connected PV system* consist of mono-, polycrystalline and thin-film technologies
- High-precision meteorological equipment for onsite measurement of environmental parameters
- Indoor test facility to characterize PV modules (mono-/bifacial) acc. to IEC standards
 - currently under construction/investigation

*Joint R&D project with SERIS (www. truepoweralliance.com)

Façade

Open-rack

Meteostation

5th bifi PV Workshop, 10th - 11th September 2018, Denver, CO

Motivation BiFaTest: Characterization of bifacial solar cells and modules

- **Energy yield measurements**
 - short-term and long-term performance of bifacial modules in specific applications (e.g. facades)
 - Deverlopment of irradiance measurement methords for bifacial (e.g. Bifacial reference cells or mini modules) \rightarrow Mini module charachterisation
- Development of a **LED-cell and module tester** with front and rear side illumination
 - Requirements on rear side illumination (intensity, spectrum)
 - Definition of measurement protocols for energy rating (e.g. IEC61853 part1 and 2)
 - Sufficient characterization method for laboratory and industry use
- Sufficient **Energy yield prediction model** based on indoor characterization methods
 - Including PV cell and module properties

Definition measurement protocol Front and rear side irradiance

- Location:
 - Bernburg (Germany; 51°N, 11°E)
 - South orientated open-rack with 35° inclination, subsurface: grass
 - Pyranometer (POA and albedo) 11
 - tear side irradiance [W/m²] typical days in June/July '18 - clear, partia cloudy and overcast
- Ratio of rear/front side irradiance:
 - Clear day: 0.14
 - Partial cloudy: 0.15 0.25
 - Overcast: ~0.2
- Rear side irradiance with grass as subsurface at 1000W/m²:
 - $G_{rear.max} = 160 \text{ W/m}^2$

•
$$G_{rear,avg} = 145 \text{ W/m}^2$$

•
$$G_{rear,min} = 130 \text{ W/m}^2$$

[1] IEC 60904-1-2 Draft V. Fakhfouri et al., 3rd bifi PV workshop 2016, Miyazaki, Japan

Definition measurement protocol Front and rear side irradiance

- Definition of rear side irradiance for specific front side irradiance
- selected from clear, partial cloudy and overcast days
- open-rack conditions with grass subsurface
- Pyranometer 1.4m above ground

Selected iradiance range:

5th bifi PV Workshop, 10th - 11th September 2018, Denver, CO

Indoor test set-up Single and double side illumination

- WAVELABS SINUS-220 LED solar simulator as front side light source
- WAVELABS LED rear side light engine as rear side light illumination (prototype)
- Spectrum: class A++ (±5%) for both light sources*
- Full spectrum flexibility unlike AM1.5g or even single wavelengths ranges
- Step less irradiance range for both light sources:
 - Front: 100 to 1200 W/m²
 - Rear: 100 to 1000 W/m²

2nd light source as rear side illumination

*certified by Fraunhofer CSP (SINUS-220) and ISFH CalTeC (rear side illumination)

5th bifi PV Workshop, 10th - 11th September 2018, Denver, CO

Hochschule Anhalt

Anhalt University of Applied Sciences

Samples Bifacial mini-module

- Group I:
 - Glass/ transparent backsheet (BS)
 - Multi wire
 - Sample with TT1
- Group II:
 - Glass/glass
 - Different numbers of busbars
 - Sample marked with GG
- Group III:
 - Glass/black and white backsheet
 - Multi wire
 - Samples with TB or TW

Sample with transparent and colored BS

Sample with four busbars (GG02)

Results Spectral response and low light behavior

SR data:

- white BS shows highest response
- SR of the rear-side over the full wavelengths range is reduced
- optical losses of rear-side due to transparent BS properties (<650nm)
- higher losses for TB2-R (glass/EVA) (>950nm)

Low light behavior at 200W/m²:

- TT1-F/TT1-R: -10%
- TT1-R/TB2-R: -2.7%

[1] S. Dittmann, PVSEC 2018 "Characterization of Bifacial PV Mini-Modules Using Front- and Double-Side Illumination"

5th bifi PV Workshop, 10th - 11th September 2018, Denver, CO

Results Spectra Unlike AM1.5g

- Isc measurement at spectra unlike AM1.5g
 - Low λ-range 350-650nm
 - Mid λ-range 550-850nm
 - High λ-range 850-1000nm
- Losses in current generation in comparison to TT1-F
- Highest losses with transparent BS in low λ-range but lowest in the high λ-range (TT1-R)

Spectrum	TT1-F	TT1-R	TB2-F	TB2-R
Low λ-range	0.00%	-19.84%	-0.16%	-14.04%
Mid λ -range	0.00%	-7.69%	-1.10%	-8.79%
High λ-range	0.00%	-3.92%	-10.25%	-12.53%

[1] S. Dittmann, PVSEC 2018 "Characterization of Bifacial PV Mini-Modules Using Front- and Double-Side Illumination"

5th bifi PV Workshop, 10th - 11th September 2018, Denver, CO

Results Single side and double side illumination

- Single side: Isc at STC and low irradiance*
- Double side: Isc at 1000 W/m² on front and 200 W/m² on rear side*
- Deviation between samples of same technology: ±0.2%
- Group I and II:
 - ~ 17% gain with double side illuminiation, GG3 13% gain
- Group III:
 - black BS -2.5% losses
 - write BS +6.5% gain
 - glass instead of transparent BS -1% losses

[1] Liu et al., Solar Energy Materials and Solar Cells, Volume 144, January 2016, Pages 523-531
[2] Koentopp et al., IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 3, NO. 1, January 2013

*Sample temperature: 25°C ±2°C, traceability: Fraunhofer ISE WPVS reference cell

5th bifi PV Workshop, 10th - 11th September 2018, Denver, CO

Results Bifaciality at different irradiances

- Highest bifacility for glass/BS (TT) samples of about 90%, lowest for glass/glass GG3 with about 65%
- Bifacility is slightly lower for low irradiances (<1%)
- Deviation between samples of same technology ±0.5%

EUREKA

5th bifi PV Workshop, 10th - 11th September 2018, Denver, CO

Results Comparison of methods

- Comparison of IEC60904-1-2 (Ge method) to double side illumination
- Differenz within ±1% at 1000 W/m² to 200 W/m²
- up to -4% difference for 100/100 W/m²

Summary

- Double side sun simulator based on LED with:
 - class A++ spectrum
 - flexible irradiance range of 100-1000W/m²
 - flexible spectra range
- Definition of measurement protocol for rear side irradiance at low irradiance as input for energy rating calculations such as IEC61853
- Transparent BS: losses of 20% in current generation for lower (<650nm) but lower losses for wavelengths >900nm in comparison to glass
- Bifacility is slightly lower for low irradiances (<1%)
- Double side measurement and IEC60904-1-2 draft approach show a good agreement, ±1% for irradiance >200W/m², up to ±4% at 100/100W/m²

Thank you for your attention

Acknowledgement

Fraunhofer CSP: Wavelabs: Yeungnam University: LG Electronics: Hamed Hanifi, Kai Sporleder Torsten Brammer, Sascha Eselfelder H. Park, Soo-Young Oh Byong Su Kim, Sungho Chang

Funding of project:

This work was funded by the German Federal Ministry of Economic Affairs and Energy (BMWi) and Zentrales Innovationsprogramm Mittelstand (ZIM) in the project BiFaTest (ZF4020807 LT6).

5th bifi PV Workshop, 10th - 11th September 2018, Denver, CO

