

Bifacial simulation in SAM

Bifacial Workshop 2018

Nicholas DiOrio, Chris Deline

September 11, 2018

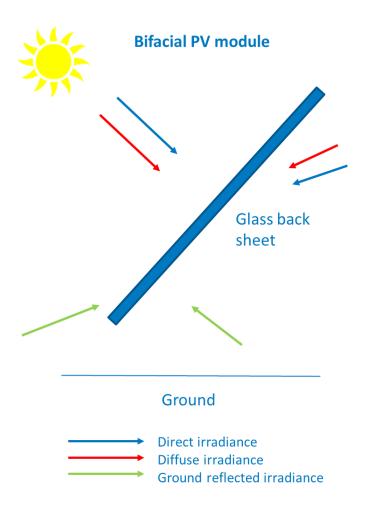
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

System Advisor Model (SAM)

SAM is free software for modeling the performance and economics of renewable energy projects.

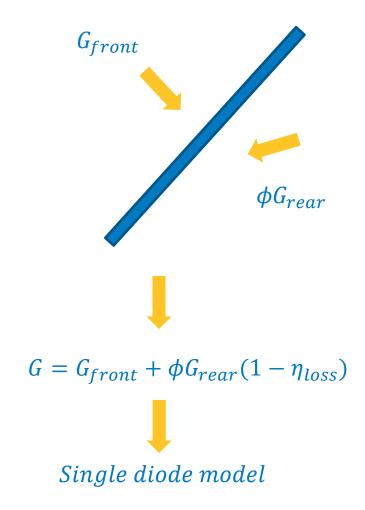
Photovoltaic, Single owner ocation and Resource	Summary Losses	Graphs I	Data Cash flow	Time series Da	ally Profiles	Statistics	
lodule	Metric Annual energy	Value 37,211,992 kWh	Monthly Array and Sy	stem Production	Project After	-tex Cash Flow	
nverter	Capacity factor First year kWhAC/kWDC	21.2% 1.861 kWh/kW			14-007		
lystem Design	Performance ratio PPA price (Vear 1)	0.82 10.28 ¢/kWh	28+020				
hading	PPA price escalation Leveloed PPA price (nominal)	1.00 %			dilla.	n	
osses	Levelized cost (nominal) Net present value	10.48 c/kWh \$2,728.050	울 28-528-	1 1 1	-		
ystem Costs	Internal rate of return (IRR) Year IRR is achieved	11.00 % 20 year			de-off-		
Degradation	IRR at end of analysis period	12.76 % 541.172.380	3+-004-				
inancial Parameters	Initial cost less cash incentives Equity				-da+007.x		
ime of Delivery Factors	Debt Debt fraction	\$21,700,422 \$2,71 %	್ರೇಶ್ವೇ ವ್ಯಕ್ತ Net do energy 📰 N	त ने की की दी की लोग स. कट का का पुर	d 1 After-tax project ret	10 13 20 25 ///18	
ncentives	Destination	26/1 %					
Depreciation	30	{	Energy Loss		POA shed		
					DC misma DC diodes	and connections loss	

http://sam.nrel.gov github.com/NREL/SAM


- Developed by NREL with funding from DOE
- Windows, OSX, and Linux
- One or two new versions per year
- Software Development Kit (SDK)
- Support

Download Beta version

https://sam.nrel.gov/sites/default/files/content/public_releases/sam-beta-windows-2018-9-10.exe


Outline

- Overview of bifacial irradiance model
- Bifacial model implementation in SAM
- Example analysis
- Some quantitative results

Model assumptions

- Applicable for a row or multiple rows of PV modules, fixed tilt or 1-axis tracked.
- Calculation of configuration factors assumes isotropic radiation
- Bifacial modules are arranged in rows of infinite length (no irradiance variation along length)
- No rear mounting obstructions
- The POA rear-side irradiance (weighted by bifaciality) adds to the front-side irradiance.
- Combined irradiance is converted to DC power using single-diode model

Bifacial irradiance model

A Practical Irradiance Model for Bifacial PV Modules

Preprint

Bill Marion, Sara MacAlpine, and Chris Deline National Renewable Energy Laboratory

Amir Asgharzadeh and Fatima Toor University of Iowa

Daniel Riley, Joshua Stein, and Clifford Hansen Sandia National Laboratories

Presented at 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC) Washington, DC June 25–30, 2017

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://www.nrel.gov/docs/fy17osti/67847.pdf

SAM Implementation https://github.com/NREL/ssc

□ NREL / bifacialvf						O Unwatch ▼	7	\star Unstar	8
<> Code	() Issues 3	n Pull requests 1	Projects 0	🔳 Wiki	Insights				

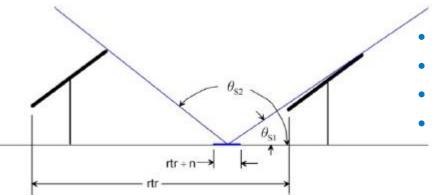
Bifacial PV View Factor model for system performance calculation

🕞 51 comr	nits 🖇 4 branches	℅ 6 releases	🎎 1 contri		
Branch: master 🕶 Ne	w pull request	Create new file Upload files	Find file Clo		
🥺 cdeline Merge pull r	equest #8 from NREL/development		Latest commit 5		
bifacialvf	update os.path.exists()				
docs	run the notebook and include output				
.gitignore	v0.1.0 initial release				
	Create LICENSE				
README.md	Roll back merge from github.com/cdeline				
setup.py	Merge branch 'development' of https://github.co	om/NREL/bifacialvf into			

README.md

bifacialvf - Bifacial PV View Factor model

python, configuration factor model


Original code by Bill Marion Python translation by Silvana Ayala Updates by Chris Deline

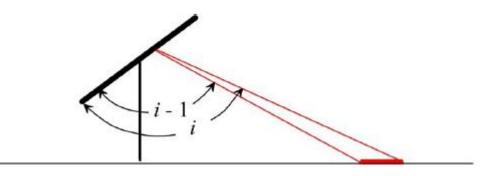
Based on the publication: "A Practical Irradiance Model for Bifacial PV Modules" B. Marion, S. MacAlpine, C. Deline, A. Asgharzadeh, F. Toor, D. Riley, J. Stein, C. Hansen 2017 IEEE Photovoltaic Specialists Conference, Washington DC, 2017 https://www.nrel.gov/docs/fy17osti/67847.pdf

https://github.com/NREL/bifacialvf

Bifacial Irradiance Model Steps

1. Identify ground that is shaded by the PV array

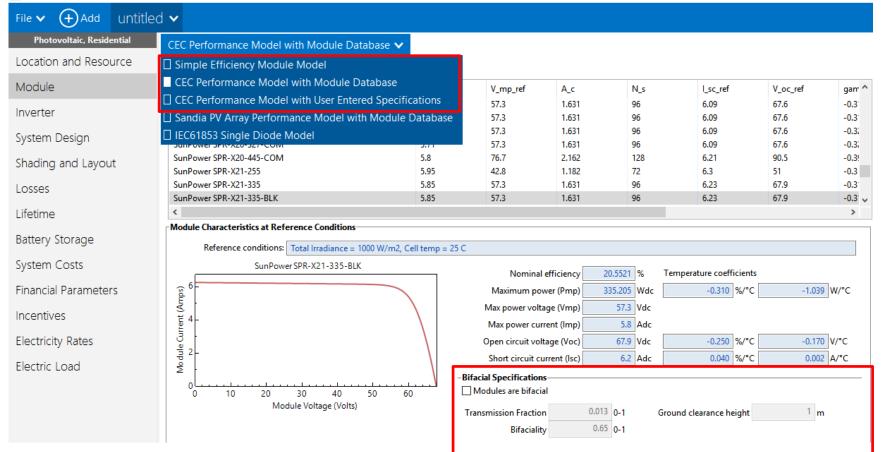
- Calculate sun position
- Project shadows into row-to-row dimension
- Divide row-to-row into n (100) segments
- Identify whether each segment is shaded or not


2. Determine irradiance received by the ground by accounting for shading and restricted view of the sky

- Use Perez tilted surface model with DNI and DHI to decompose DHI into circumsolar, sky and horizon components
- For each segment, compute ground irradiance

Images from "A Practical Irradiance Model for Bifacial PV Modules", Marion et al.

Bifacial Irradiance Model Steps


- 3. Determine the irradiance for the rear-side, which is a sum of:
 - a. Irradiance from sky
 - b. Irradiance reflected from the ground
 - c. Irradiance reflected from the front surface of PV modules in the next row (considering only diffuse radiation)
 - d. Irradiance from the sun and circumsolar region of the sky for AOI $< 90^{\circ}$

• Diffuse irradiance for back-side is summed by dividing field-of-view into 180 onedegree segments and adding each segments contribution

Bifacial model in SAM

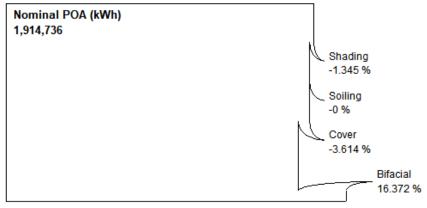
* SAM 2018.8.13

• Bifacial model available for module models which do not require test data

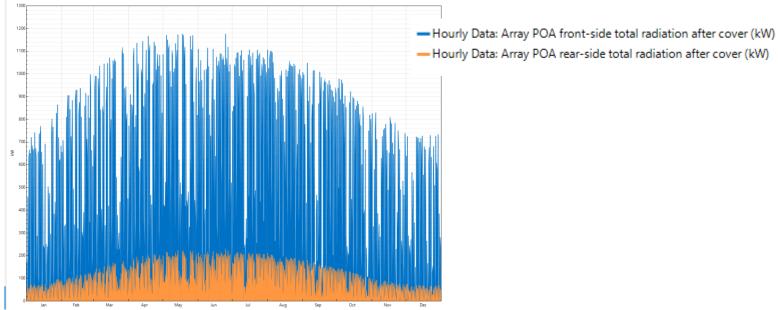
Bifacial system layout

Self Shading for Fixed Subarrays and One-axis Tracke	rs							
Self shading is shading of modules in the array by modules in a neighboring row.								
Self shading	Standard (Non-line ${}^{\checkmark}$	None 🗸 🗸	None 🗸 🗸	None 🗸				
	Array Dimensions for Self Shading, Snow Losses, and Bifacial Modules							
The product of number of modules along side and bott	om should be equal to the n	number of modules in suba	rray.					
Module orientation Landscape ~ Portrait ~ Portrait ~ Portrait ~								
Number of modules along side of row	1	2	2	2				
Number of modules along bottom of row	7	9	9	9				
-Calculated System Layout								
Number of rows 100 0 0								
Modules in subarray from System Design page 700 0 0				0				
Length of side (m)	1.00031	3.261	3.261	3.261				
GCR from System Design page	0.666667	0.3	0.3	0.3				
Row spacing estimate (m)	1.50046	10.87	10.87	10.87				
Module aspect ratio 1.63		module orientation	number of ro	WS				
row spi	acing = length of side ÷ GCR	(portrait)			7			
Module length 1.6305 m		<u> </u>	/					
Module width 1.00031 m	ength of side		/ number of n along s					
Module area 1.631 m ²			2	¥ <u></u>				
	Module area number of modules along bottom							

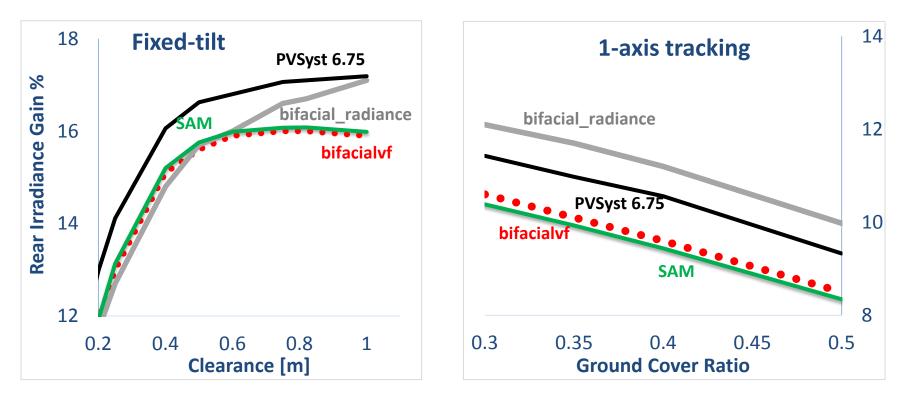
Shading and Layout – Important to turn on self-shading model and configure the geometry of the layout for correct calculation of front-side and rear-side irradiance!


Irradiance Losses				
Soiling losses apply to the total solar irradia Shading and Snow page.	ance incident on each su	ıbarray. SAM applies thes	e losses in addition to any	losses on the
	Subarray 1	Subarray 2	Subarray 3	Subarray 4
Monthly soiling loss	Edit values	Edit values	Edit values	Edit values
Average annual soiling loss	2	5	5	5
-Bifacial modules only				
Average annual rear irradiance loss due to soiling, mismatch, or external shading (%)	2	0	0	0

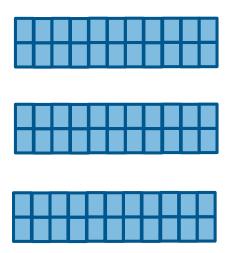
Additional rear-side irradiance losses can input to approximate:

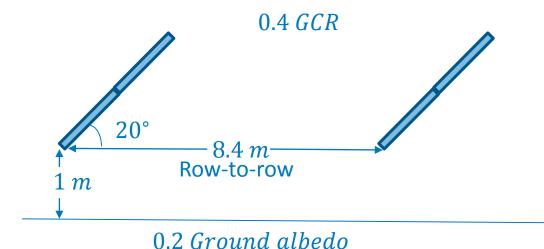

- Mismatch loss between front and rear-side
- Shading due to mounting structure or tracking system
- Soiling on the rear-side

Bifacial model outputs


Updated loss diagram, showing bifacial irradiance gain

Time series outputs for front and rear-side irradiance for each subarray and total array

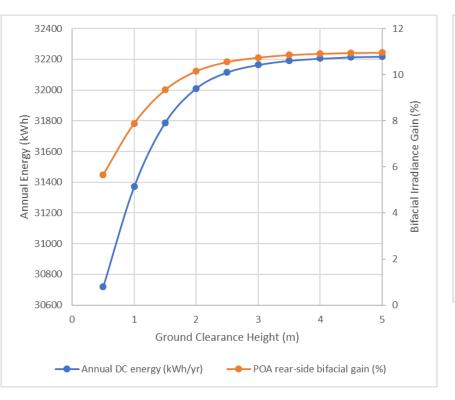

Model comparison


Preliminary results

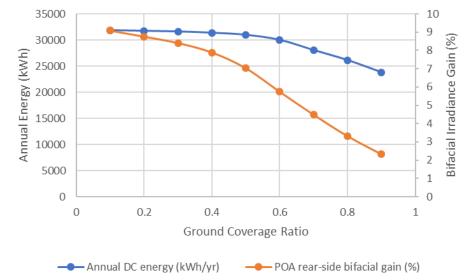
- SAM implementation closely tracks with bifacialvf prediction
- SAM tracks bifacial_radiance model at low ground clearances.
- SAM consistently predicts approximately 1-2% less rear-side irradiance than PVSyst
- For tracked systems bifacial_radiance predicts higher gain

 Evaluate the boost in energy production with bifacial modules compared to monofacial modules with and without tracking systems.

3 rows of 22 modules


	Monofacial Fixed-tilt	Bifacial Fixed-tilt	Monofacial 1-axis track	Bifacial 1-axis track
POA Annual Irradiance (kWh)	190,961	206,030	254,943	265,187
Irradiance Gain	0%	7.9%	33.5%	38.9%
DC Annual Energy (kWh)	29,051	31,372	36,614	38,130
Energy Gain	0%	8.0 %	26.0%	31.3%

*Gains calculated relative to monofacial fixed-tilt system


- DC energy gain is different from irradiance gain due to non-linear module response
- Installing 1-axis tracker on monofacial results in higher gain than installing bifacial (in this case).
- Installing bifacial modules with 1-axis trackers boosts annual DC energy by 31% over fixed monofacial system.

Sensitivity analysis of key variables

Ground Clearance Height

Ground Coverage Ratio

Key Variables:

- Ground Clearance Height
- Ground Coverage Ratio (row spacing)
- Albedo
- Tilt

Ground clearance height (m)	Ground coverage ratio	Tilt (deg)	Annual DC energy (kWh/yr)	POA rear- side bifacial gain (%)
2	0.2	40	34221	12.226
2	0.2	45	34203	12.613
2	0.2	35	34100	12.056
1.5	0.2	45	33957	11.791
1.5	0.2	40	33949	11.323
2	0.2	30	33820	11.992
1.5	0.2	35	33803	11.068
2	0.3	40	33687	11.104
2	0.3	35	33638	11.034

Perform sweep of system layouts between:

- 0.1 0.5 GCR
- 15 45 degree tilt
- 0 2 m ground clearance

Sort by annual energy

Summary and Future Work

Summary

- Bifacial model added to SAM to calculate rear-side irradiance.
- Implementation tracks closely with other bifacial irradiance models

Future Work

- Model improvement and validation as part of upcoming NREL and Sandia projects:
 - NREL installation of tracked bifacial PV
 - Impacts on bifacial PV shading from rack equipment
 - Research on mismatch from rear irradiance gradient.

Thank you!

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.