

Physics and Performance Limits of Bifacial Solar Cells: A Global Perspective

M. A. Alam, X. Sun, R. Khan, C. Deline (alam@purdue.edu)

A magnificent multiscale problem: Atom-to-farm perspective

An atom-to-system approach for PV research.

Like politics ... PV is local

180[°]W 90[°]W 0[°] 90[°]E 180[°]E

180° W 90° W 0° 90° E 180° E

Outline

Physics of bifacial solar cells

- Solar Cell: A not-so-efficient technology
- Efficiency of bifacial solar cells
- Energy yield of actual solar farms

□ Three types of bifacial solar farms

- Standalone bifacial solar farms
- Vertical and Ground Sculpted Solar Farms
- LCOE and Optimally tiled Bifacial Solar Farms

Opportunities

• Simulator, Tandem, tracking solar cells

$$\eta = \eta_N \times \eta_{SQ} \times \eta_M \times \eta_A = \frac{2}{\pi} \times \frac{1}{3} \times \frac{5}{6} \times \frac{3}{4} \sim \frac{1}{7}$$

Tracking, multi-junction, bifacial

SQ Triangle and Tandem PV

SQ Limit of Bifacial Solar Cell

 $N_{crit} \leq 1 + R^{-1}$

 $\frac{S_N}{S_1}$

 $\frac{S_N}{S_1}$

 $2(1+R)N^2$

 $\overline{N(N+1)(R+1)-2R}$

 $8R(1+R)N^2$

 $2R(2N^2 + 4N + 1) - 9R^2 - 1$

Outline

Physics of bifacial solar cells

- Solar Cell: A not-so-efficient technology
- Efficiency of bifacial solar cells
- Energy yield of actual solar farms
- □ Three types of bifacial solar farms
 - Illumination and electrical model of bifacial PV
 - Standalone bifacial solar farms
 - Vertical and Ground Scupited Solar Farms
 - LCOE and Optimally tiled Bifacial Solar Farms

Opportunities

• Simulator, Tandem, tracking solar cells

End-to-end modeling of Bifacial Si-Heterojunction Cell

(b)

Chavali, Stefaan De Wolf, M.A.Alam, PIP, 2018.

Sun and the solar cells ...

horizon

Purdue University Meteorological Tool (PUMET):Available on <u>nanoHUB</u>

Irradiance Model

Light Collection

Electrical Output

PUB in PVLiB, Cliff Hansen & J. Stein

global meteorological database

vertical

Optical view-factor based approach

North

12

PUMET database

SUNY (2000-2014)

MTS1(1961-1990)

MTS2(1991-2005)

PUMET database

Datahasa Davamatava								
	<u>F</u> ile							
NS	Data type		Simulate					
	Choose databases:	PSM 💌						
	Select type of data:	Real-Time data	Result: Irradiance 🗾	🖁 n/s)				
NS	Time Resolution:	Hourly	Hourly					
	Latitude:	41.8781		1				
	Longitude:	-87.6289		1				
NS	Start Year:	2014		6				
	End Year:	2014		-				
	Start Month:	8						
NSI	Start Day:	1						
	Start Hour:	0						
	End Month:	9	200 400 600					
	End Day:	1	Hours	5				
	End Hour:	0	1 result Clea	ar				
		remperature (0), mina opeea (1	110), 001111 Zeniti ungle(405) ,					
	Solar Azimuth angle(deg)							

decompose irradiance

X. Sun et al, Applied Energy, 2018 **Stand-alone Bifacial PV**

Light to electricity by opto-electro-thermal model

Location (Type)	Elevation /	Albedo / Bifaciality	Tilt Angle / Facing	Reported Bifacial	Calculated	Difference
	Module Height			Gain (%)	Bifacial Gain (%)	(%)
	(m)					
Cairo (Sim.)	1 / 0.93	0.2 / 0.8	26° / South	11.0	11.1	-0.1
[11]						
Cairo (Sim.)	1 / 0.93	0.5 / 0.8	22º / South	24.8	25	-0.2
[11]						
Oslo (Sim.) [11]	0.5 / 0.93	0.2 / 0.8	51º / South	10.4	13.6	-3.2
Oslo (Sim.) [11]	0.5 / 0.93	0.2 / 0.8	47º / South	16.4	22.8	-6.4
Hokkaido*	0.5 / 1.66	0.2 / 0.95	35° / South	23.3	25.7	-2.4
(Exp.) [46]						
Hokkaido*	0.5 / 1.66	0.5 / 0.95	35° / South	8.6	13	-4.4
(Exp.) [46]						
Albuquerque	1.08 / 0.984	0.55 / 0.9	15° / South	32.5**	30.2	2.3
(Exp.) [16]						
Albuquerque	1.08 / 0.984	0.55 / 0.9	15º / West	39**	36.7	2.3
(Exp.) [16]						
Albuquerque	1.03 / 0.984	0.25 / 0.9	30° / South	19**	14.6	4.4
(Exp.) [16]						
Albuquerque ***	0.89 / 0.984	0.25 / 0.9	90° / South	30.5**	32.2	-1.6
(Exp.) [16]						
Golden (Exp.)	1.02 / 1.02	0.2 / 0.6	30°/ South	8.3	8.6	-0.3

Table 1 Modeling Framework Validation Against Literature

Only data from May to August were used to eliminate snow effects.

** Average bifacial gain of multiple test modules was used.

*** The east-west-facing vertical modules measurement in [16] shows great discrepancy between two modules; therefor, it is not included

here.

**** Bifacial measurement (12/2016 to 08/2017) performed by the National Renewable Energy Laboratory.

Bifacial Performance/Orientation

180°W 90°W 0° 90°E 180°E

global optimization: orientation

X. Sun et al, Applied Energy, 2018

Scaling theory of stand-alone Bifacial

Lat. Latitude

X. Sun and M. Alam, Applied Energy, 2018

E_{or} in meter for a module height of H									
by ₅ in increasion in increasion of the									
$E_o = H \times (-Lat \times (0.028 \times R_A + 0.009) + 3.3 \times R_A + 0.4)$ If $E_o \le 0$, $E_{95} = 0$ and If $E_o > 0$, $E_{95} = E_o$		E_{95} is the minimum elevation to achieve at least 95% of the self-shading absent maximum energy yield, i.e.,							
		further elevation only provides limited energy boost.							
Lat _{Cri} of bifacial solar module for a given elevation (E), module height (H), and albedo (R_A)									
$Lat_o = E/H \times (44 \times R_A - 62) + 37 \times R_A + 12$		Lat_{Cri} is the critical latitude below which Bi_{EW} product more electricity than Bi_{EW} and vice versa							
If $Lat_o \leq 0$, $Lat_{Cri} = 0^o$ and If $Lat_o > 0$, $Lat_{Cri} = Lat_o$	(A4)	nore electricity than Diss, and the versa.							
Optimal Tilt Angle β_{0pt} for Bi_{SN} for a given latitude (<i>Lat</i>), elevation (<i>E</i>), module height (<i>H</i>), and albedo (<i>R</i> _A)									
$\beta_o = a \times Lat + b$ $a = 0.86 - 0.57 \times R_A \times \exp[(-E/H)]$		β_{Opt} is the optimal tilt angle for Bi_{SN} for maximum electricity yield							
$b = 4.5 + 62 \times R_A \times \exp(E + E/H)$									
If $\beta_o \ge 90^\circ$, $\beta_{0pt} = 90^\circ$ and If $\beta_o < 90^\circ$, $\beta_{0pt} = \beta_o$	(A8)								

Outline

Physics of bifacial solar cells

- Solar Cell: A not-so-efficient technology
- Efficiency of bifacial solar cells
- Energy yield of actual solar farms

□ Three types of bifacial solar farms

- Illumination and electrical model of bifacial PV
- Stand-alone bifacial solar farms
- Vertical and Ground Scuplted Solar Farms
- LCOE and Optimally tiled Bifacial Solar Farms

Opportunities

• Simulator, Tandem, tracking solar cells

A bifacial solar farm requires complex opto-electro-thermal modeling

Vertical Solar Farm has advantages, but

R. Khan and M. Alam, Applied Energy, 2017

... even with high albedo, the gain is relatively small

Ground-sculpting offers significant improvement ...

R. Khan and M. Alam, Applied Energy, 2018 (In review)

Optimally tilted and LCOE-optimized Farm

180°W 90°W 0° 90°E 180°E

10 20 30 40 50 Optimum Tilt Angle $M_L = 0$

(a)

180° W 90° W 0° 90° E 180° E

2.5 3 3.5 4 4.5 5 PCOE_{min} ×10⁻³

(b) $M_L = 100$

180° W 90° W 0° 90° E 180° E

T. Patel and M. Alam, 2018 (Unpublished)

Outline

Physics of bifacial solar cells

- Solar Cell: A not-so-efficient technology
- Efficiency of bifacial solar cells
- Energy yield of actual solar farms

□ Three types of bifacial solar farms

- Standalone bifacial solar farms
- Vertical and Ground Sculpted Solar Farms
- LCOE and Optimally tiled Bifacial Solar Farms

Opportunities

• Simulator, Tandem, tracking solar cells

Bifacial tandem cell operation

SOLAR CELLS

High-efficiency solution-processed perovskite solar cells with millimeter-scale grains

Wanyi Nie,¹* Hsinhan Tsai,²* Reza Asadpour,³† Jean-Christophe Blancon,²† Amanda J. Neukirch,^{4,5} Gautam Gupta,¹ Jared J. Croetet,² Manish Chhowalla,⁶ Sergei Tretiak,⁸ Muhammad A. Alam,³ Hsing-Lin Wang,²† Aditya D. Mohite¹‡

H. Chung, Optics Express, 2017.

33% Efficient HIT-Perovskite Cells!

R.Asadpour*, R.V. K. Chavali*, M. R. Khan*, and M.A.Alam, APL, 106, p. 243902, Jun. 2015 27

Technology/location-specific BPV

180[°]W 90[°]W 0[°] 90[°]E 180[°]E

180° W 90° W 0° 90° E 180° E

Conclusions: A magnificent Multiscale problem

How to use PUB

Specification

Simulation

Bifacial Energy Yield

Bifacial vs. monofacial energy yield

Conclusions: Geography specific solar

Solar cells are **fundamentally inefficient**. And endto-end perspective provides opportunities for improvement at the cell, module, and farm levels.

Thermodynamically, bifacial and bifacial tandems promise **dramatic gain.**.

Vertical bifacial farms may be a good choice for certain regions of world. The energy gain may not be significant, but reduction in **cleaning cost and water usage** could be make the system economically viable. For other regions tilt-optimized bifacial PV is profitable.

Reliability is fundamentally important – 5% increase in lifetime may be easier than 5% increase in efficiency.

Questions/comments: alam@purdue.edu

